
EBTKS
Project Top

Table of Contents

EBTKS Overview
The Origin story for EBTKS
EBTKS Feature List

EBTKS Getting Started
Guide Rails
3D Printed Case
What’s in the box
EBTKS is Pre Configured
Moving EBTKS to a different computer
Time to start playing
What else is on the MicroSD Card
EBTKS Configuration
A few New Keywords
Links
Connecting the serial diagnostic port

A Guided tour of the MicroSD Card
Working with CONFIG.TXT

Before you get started
System Settings
Tape Drive
ROMs Section
ROM Entries
Disk Drives
Printers
AutoStart
Extended Memory Control (EMC)

(01)(01)

http://www.fliptronics.com/HP-85_Adventures/
http://www.fliptronics.com/EBTKS/EBTKS.html
http://www.fliptronics.com/EBTKS/EBTKS.html#the-origin-story-for-ebtks
http://www.fliptronics.com/EBTKS/EBTKS.html#ebtks-feature-list
http://www.fliptronics.com/EBTKS/EBTKS_Getting_Started.html
http://www.fliptronics.com/EBTKS/EBTKS_Getting_Started.html#guide-rails
http://www.fliptronics.com/EBTKS/EBTKS_Getting_Started.html#d-printed-case
http://www.fliptronics.com/EBTKS/EBTKS_Getting_Started.html#what-s-in-the-box
http://www.fliptronics.com/EBTKS/EBTKS_Getting_Started.html#ebtks-is-pre-configured
http://www.fliptronics.com/EBTKS/EBTKS_Getting_Started.html#moving-ebtks-to-a-different-computer
http://www.fliptronics.com/EBTKS/EBTKS_Getting_Started.html#time-to-start-playing
http://www.fliptronics.com/EBTKS/EBTKS_Getting_Started.html#what-else-is-on-the-microsd-card
http://www.fliptronics.com/EBTKS/EBTKS_Getting_Started.html#ebtks-configuration
http://www.fliptronics.com/EBTKS/EBTKS_Getting_Started.html#a-few-new-keywords
http://www.fliptronics.com/EBTKS/EBTKS_Getting_Started.html#links
http://www.fliptronics.com/EBTKS/EBTKS_Getting_Started.html#connecting-the-serial-diagnostic-port
http://www.fliptronics.com/EBTKS/MicroSD_Card_Tour.html
http://www.fliptronics.com/EBTKS/Working_with_CONFIG.TXT.html
http://www.fliptronics.com/EBTKS/Working_with_CONFIG.TXT.html#before-you-get-started
http://www.fliptronics.com/EBTKS/Working_with_CONFIG.TXT.html#system-settings
http://www.fliptronics.com/EBTKS/Working_with_CONFIG.TXT.html#tape-drive
http://www.fliptronics.com/EBTKS/Working_with_CONFIG.TXT.html#roms-section
http://www.fliptronics.com/EBTKS/Working_with_CONFIG.TXT.html#rom-entries
http://www.fliptronics.com/EBTKS/Working_with_CONFIG.TXT.html#disk-drives
http://www.fliptronics.com/EBTKS/Working_with_CONFIG.TXT.html#printers
http://www.fliptronics.com/EBTKS/Working_with_CONFIG.TXT.html#autostart
http://www.fliptronics.com/EBTKS/Working_with_CONFIG.TXT.html#extended-memory-control-emc
Tony Serra
Typewritten text
 - 05

Tony Serra
Typewritten text
 - 06

Tony Serra
Typewritten text
 - 10

Tony Serra
Typewritten text
 - 10

Tony Serra
Typewritten text
 - 10

Tony Serra
Typewritten text

Tony Serra
Typewritten text
 - 05

Tony Serra
Typewritten text
 - 10

Tony Serra
Typewritten text
- 11

Tony Serra
Typewritten text
 - 12

Tony Serra
Typewritten text
 - 13

Tony Serra
Typewritten text
 - 19

Tony Serra
Typewritten text
 - 19

Tony Serra
Typewritten text
 - 20

Tony Serra
Typewritten text
 - 21

Tony Serra
Typewritten text
 - 21

Tony Serra
Typewritten text
 - 24

Tony Serra
Typewritten text
 - 25

Tony Serra
Typewritten text
 - 25

Tony Serra
Typewritten text
 - 29

Tony Serra
Typewritten text
 - 30

Tony Serra
Typewritten text
 - 30

Tony Serra
Typewritten text
 - 31

Tony Serra
Typewritten text
 - 33

Tony Serra
Typewritten text
 - 38

Tony Serra
Typewritten text
 - 39

Tony Serra
Typewritten text
 - 42

Here is an example of CONFIG.TXT
Disk, Tape and SD Card Storage

SD Card Storage using FAT32
Disk Drive emulation
Tape drive emulation

16 KB RAM for the HP-85A
AUXROM Keywords

AUXROM
AUXROM Error messages
Loading and Unloading emulated LIF disk and tape images
SD Card File Manipulation
SD Card File Access
Directory Manipulation
Export/Import Of Series 80 Files
GENERAL FEATURES
Keyboard Functionality
CRT Functionality
Options/Settings
Miscellaneous Commands
LIF DISK FEATURES
Other error messages
LOW-LEVEL FUNCTIONS
ADDING NEW FEATURES TO THE HP-85 AUX ROMS
ADDING NEW NON-KEYWORD FEATURES
Octal Keycodes for Special Keys on HP 85 A/B Keyboard
Octal Keycodes for Special Keys on HP 86 and 87 Keyboard

EBTKS Downloads
Standard File Set for the SD card
Update V1.0.2: Do I need it?
Update V1.0.2
Firmware for Teensy 4.1
CONFIG.TXT
EBTKS Quick Reference Guide (QRG)
SanDisk Brand SD Card Datasheet

(02)

http://www.fliptronics.com/EBTKS/Working_with_CONFIG.TXT.html#here-is-an-example-of-config-txt
http://www.fliptronics.com/EBTKS/EBTKS_Storage.html
http://www.fliptronics.com/EBTKS/EBTKS_Storage.html#sd-card-storage-using-fat32
http://www.fliptronics.com/EBTKS/EBTKS_Storage.html#disk-drive-emulation
http://www.fliptronics.com/EBTKS/EBTKS_Storage.html#tape-drive-emulation
http://www.fliptronics.com/EBTKS/16_KB_RAM_for_the_HP-85A.html
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#auxrom
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#auxrom-error-messages
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#loading-and-unloading-emulated-lif-disk-and-tape-images
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#sd-card-file-manipulation
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#sd-card-file-access
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#directory-manipulation
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#export-import-of-series-80-files
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#general-features
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#keyboard-functionality
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#crt-functionality
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#options-settings
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#miscellaneous-commands
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#lif-disk-features
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#other-error-messages
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#low-level-functions
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#adding-new-features-to-the-hp-85-aux-roms
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#adding-new-non-keyword-features
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#octal-keycodes-for-special-keys-on-hp-85-a-b-keyboard
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#octal-keycodes-for-special-keys-on-hp-86-and-87-keyboard
http://www.fliptronics.com/EBTKS/EBTKS_Downloads.html
http://www.fliptronics.com/EBTKS/EBTKS_Downloads.html#standard-file-set-for-the-sd-card
http://www.fliptronics.com/EBTKS/EBTKS_Downloads.html#update-v1-0-2-5-do-i-need-it
http://www.fliptronics.com/EBTKS/EBTKS_Downloads.html#update-v1-0-2
http://www.fliptronics.com/EBTKS/EBTKS_Downloads.html#firmware-for-teensy-4-1
http://www.fliptronics.com/EBTKS/EBTKS_Downloads.html#config-txt
http://www.fliptronics.com/EBTKS/EBTKS_Downloads.html#ebtks-quick-reference-guide-qrg
http://www.fliptronics.com/EBTKS/EBTKS_Downloads.html#sandisk-brand-sd-card-datasheet
Tony Serra
Typewritten text
 - 44

Tony Serra
Typewritten text
 - 48

Tony Serra
Typewritten text
 - 48

Tony Serra
Typewritten text
 - 50

Tony Serra
Typewritten text
 - 51

Tony Serra
Typewritten text
 - 53

Tony Serra
Typewritten text
 - 54

Tony Serra
Typewritten text
 - 55

Tony Serra
Typewritten text
 - 57

Tony Serra
Typewritten text
 - 57

Tony Serra
Typewritten text
 - 60

Tony Serra
Typewritten text
 - 62

Tony Serra
Typewritten text
 - 67

Tony Serra
Typewritten text
 - 70

Tony Serra
Typewritten text
 - 71

Tony Serra
Typewritten text
 - 75

Tony Serra
Typewritten text
 - 76

Tony Serra
Typewritten text
 - 78

Tony Serra
Typewritten text
 - 79

Tony Serra
Typewritten text
 - 81

Tony Serra
Typewritten text
 - 85

Tony Serra
Typewritten text
 - 85

Tony Serra
Typewritten text
 - 88

Tony Serra
Typewritten text
 - 89

Tony Serra
Typewritten text
 - 90

Tony Serra
Typewritten text
 - 90

Tony Serra
Typewritten text
 - 91

Tony Serra
Typewritten text
 - 91

Tony Serra
Typewritten text
 - 91

Tony Serra
Typewritten text
 - 92

Tony Serra
Typewritten text
 - 95

Tony Serra
Typewritten text
 - 95

Tony Serra
Typewritten text
 - 95

Tony Serra
Typewritten text
 - 95

Github
EBTKS Schematic

EBTKS 3D Printable cases
Daniel Simpson
Martin Hepperle

Daniel Simpson’s 3D case
Martin Hepperle’s 3D case
Updating the EBTKS Firmware

Teensy 4.1
Windows
Linux
Mac
Un-Bricking a Teensy 4.1

Help
AUX ROM HELP “RULES OF THE ROAD”
DITWAD (Do It This Way As Demanded)
DEVICE
SUB-SYSTEM
IO MODULES
ROMS & BPGMS
KEYWORDS

Practice of Operation
EBTKS Console

Console
Console Help Commands

EBTKS Memory Map for the AUXROM(s)
Detailed view of the AUXROM shared RAM area

EBTKS I/O Map
AUXROMs Internals

Make sure we cover these topics
AUXROM Shared RAM: Buffers
AUXROM Shared RAM: Mailboxes
AUXROM Shared RAM: Buffer Lengths
AUXROM Shared RAM: Usage Code

(03)

http://www.fliptronics.com/EBTKS/EBTKS_Downloads.html#github
http://www.fliptronics.com/EBTKS/EBTKS_Downloads.html#ebtks-schematic
http://www.fliptronics.com/EBTKS/EBTKS_3D_Cases_Index.html
http://www.fliptronics.com/EBTKS/EBTKS_3D_Cases_Index.html#daniel-simpson
http://www.fliptronics.com/EBTKS/EBTKS_3D_Cases_Index.html#martin-hepperle
http://www.fliptronics.com/EBTKS/Daniel_Simpson_3D_case.html
http://www.fliptronics.com/EBTKS/Martin_Hepperle_3D_case.html
http://www.fliptronics.com/EBTKS/Updating_the_EBTKS_Firmware.html
http://www.fliptronics.com/EBTKS/Updating_the_EBTKS_Firmware.html#teensy-4-1
http://www.fliptronics.com/EBTKS/Updating_the_EBTKS_Firmware.html#windows
http://www.fliptronics.com/EBTKS/Updating_the_EBTKS_Firmware.html#linux
http://www.fliptronics.com/EBTKS/Updating_the_EBTKS_Firmware.html#mac
http://www.fliptronics.com/EBTKS/Updating_the_EBTKS_Firmware.html#un-bricking-a-teensy-4-1
http://www.fliptronics.com/EBTKS/Help_Facility.html
http://www.fliptronics.com/EBTKS/Help_Facility.html#aux-rom-help-rules-of-the-road
http://www.fliptronics.com/EBTKS/Help_Facility.html#ditwad-do-it-this-way-as-demanded
http://www.fliptronics.com/EBTKS/Help_Facility.html#device
http://www.fliptronics.com/EBTKS/Help_Facility.html#sub-system
http://www.fliptronics.com/EBTKS/Help_Facility.html#io-modules
http://www.fliptronics.com/EBTKS/Help_Facility.html#roms-bpgms
http://www.fliptronics.com/EBTKS/Help_Facility.html#keywords
http://www.fliptronics.com/EBTKS/Practice_of_Operation.html
http://www.fliptronics.com/EBTKS/EBTKS_Console.html
http://www.fliptronics.com/EBTKS/EBTKS_Console.html#console
http://www.fliptronics.com/EBTKS/EBTKS_Console.html#console-help-commands
http://www.fliptronics.com/EBTKS/EBTKS_Memory_Map.html
http://www.fliptronics.com/EBTKS/EBTKS_Memory_Map.html#detailed-view-of-the-auxrom-shared-ram-area
http://www.fliptronics.com/EBTKS/EBTKS_IO_Map.html
http://www.fliptronics.com/EBTKS/AUXROMs_Internals.html
http://www.fliptronics.com/EBTKS/AUXROMs_Internals.html#make-sure-we-cover-these-topics
http://www.fliptronics.com/EBTKS/AUXROMs_Internals.html#auxrom-shared-ram-buffers
http://www.fliptronics.com/EBTKS/AUXROMs_Internals.html#auxrom-shared-ram-mailboxes
http://www.fliptronics.com/EBTKS/AUXROMs_Internals.html#auxrom-shared-ram-buffer-lengths
http://www.fliptronics.com/EBTKS/AUXROMs_Internals.html#auxrom-shared-ram-usage-code
Tony Serra
Typewritten text
-96

Tony Serra
Typewritten text
 - 96

Tony Serra
Typewritten text
 - 97

Tony Serra
Typewritten text
 - 97

Tony Serra
Typewritten text
 - 98

Tony Serra
Typewritten text
 - 99

Tony Serra
Typewritten text
 - 103

Tony Serra
Typewritten text
 - 108

Tony Serra
Typewritten text
 - 108

Tony Serra
Typewritten text
 - 109

Tony Serra
Typewritten text
 - 111

Tony Serra
Typewritten text
 - 112

Tony Serra
Typewritten text
 - 112

Tony Serra
Typewritten text
 - 115

Tony Serra
Typewritten text
 - 115

Tony Serra
Typewritten text
 - 115

Tony Serra
Typewritten text
 - 118

Tony Serra
Typewritten text
 - 118

Tony Serra
Typewritten text
 - 118

Tony Serra
Typewritten text
 - 119

Tony Serra
Typewritten text
 - 119

Tony Serra
Typewritten text
 - 120

Tony Serra
Typewritten text
 - 121

Tony Serra
Typewritten text
 - 121

Tony Serra
Typewritten text
 - 121

Tony Serra
Typewritten text
 - 124

Tony Serra
Typewritten text
 - 126

Tony Serra
Typewritten text
 - 127

Tony Serra
Typewritten text
 - 129

Tony Serra
Typewritten text
 - 129

Tony Serra
Typewritten text
 - 129

Tony Serra
Typewritten text
 - 130

Tony Serra
Typewritten text
 - 130

Tony Serra
Typewritten text
 - 130

How Mailboxes, Buffers, Buffer Lengths, and Usage Codes Work
Scenario 1: AUXROM wants to pass 256 bytes to EBTKS
Scenario 2: A Keyword on the HP-85 is Executed to pass a string to
EBTKS
Scenario 3: AUXROM wants to receive 256 bytes from EBTKS
Fast inter-ROM jumps

Logic Analyzer
EBTKS Possibilities
How to order EBTKS

Shipping and Payment for USA customers
Shipping and Payment for non-USA customers
Address and System Configuration

Application Notes
Using EBTKS in multiple Series80 Computers
SD Card contents differences between 85A/B and 86/87
Editing CONFIG.TXT with BASIC programs
Setting up TeraTerm
Setting Time and Date
More on MOUNT
Setting up EBTKS and the CP/M module
Using the Service ROM with EBTKS

Known Issues
WiFi Support

Requirements for WiFi connectivity
WiFi Overview
Enable remote screen mirroring
Connect your Browser to EBTKS

Indices and tables
Index

(04)

http://www.fliptronics.com/EBTKS/AUXROMs_Internals.html#how-mailboxes-buffers-buffer-lengths-and-usage-codes-work
http://www.fliptronics.com/EBTKS/AUXROMs_Internals.html#scenario-1-auxrom-wants-to-pass-256-bytes-to-ebtks
http://www.fliptronics.com/EBTKS/AUXROMs_Internals.html#scenario-2-a-keyword-on-the-hp-85-is-executed-to-pass-a-string-to-ebtks
http://www.fliptronics.com/EBTKS/AUXROMs_Internals.html#scenario-3-auxrom-wants-to-receive-256-bytes-from-ebtks
http://www.fliptronics.com/EBTKS/AUXROMs_Internals.html#fast-inter-rom-jumps
http://www.fliptronics.com/EBTKS/EBTKS_Logic_Analyzer.html
http://www.fliptronics.com/EBTKS/EBTKS_Possibilities.html
http://www.fliptronics.com/EBTKS/How_to_Order_EBTKS.html
http://www.fliptronics.com/EBTKS/How_to_Order_EBTKS.html#shipping-and-payment-for-usa-customers
http://www.fliptronics.com/EBTKS/How_to_Order_EBTKS.html#shipping-and-payment-for-non-usa-customers
http://www.fliptronics.com/EBTKS/How_to_Order_EBTKS.html#address-and-system-configuration
http://www.fliptronics.com/EBTKS/Application_Notes.html
http://www.fliptronics.com/EBTKS/Application_Notes.html#using-ebtks-in-multiple-series80-computers
http://www.fliptronics.com/EBTKS/Application_Notes.html#sd-card-contents-differences-between-85a-b-and-86-87
http://www.fliptronics.com/EBTKS/Application_Notes.html#editing-config-txt-with-basic-programs
http://www.fliptronics.com/EBTKS/Application_Notes.html#setting-up-teraterm
http://www.fliptronics.com/EBTKS/Application_Notes.html#setting-time-and-date
http://www.fliptronics.com/EBTKS/Application_Notes.html#more-on-mount
http://www.fliptronics.com/EBTKS/Application_Notes.html#setting-up-ebtks-and-the-cp-m-module
http://www.fliptronics.com/EBTKS/Application_Notes.html#using-the-service-rom-with-ebtks
http://www.fliptronics.com/EBTKS/Known_Issues.html
http://www.fliptronics.com/EBTKS/WiFi_Support.html
http://www.fliptronics.com/EBTKS/WiFi_Support.html#requirements-for-wifi-connectivity
http://www.fliptronics.com/EBTKS/WiFi_Support.html#wifi-overview
http://www.fliptronics.com/EBTKS/WiFi_Support.html#enable-remote-screen-mirroring
http://www.fliptronics.com/EBTKS/WiFi_Support.html#connect-your-browser-to-ebtks
http://www.fliptronics.com/EBTKS/genindex.html
Tony Serra
Typewritten text
 - 130

Tony Serra
Typewritten text
 - 131

Tony Serra
Typewritten text
 - 132

Tony Serra
Typewritten text
 - 133

Tony Serra
Typewritten text
 - 133

Tony Serra
Typewritten text
 - 134

Tony Serra
Typewritten text
 - 135

Tony Serra
Typewritten text
 - 136

Tony Serra
Typewritten text
 - 137

Tony Serra
Typewritten text
 - 138

Tony Serra
Typewritten text
 - 139

Tony Serra
Typewritten text
 - 141

Tony Serra
Typewritten text
 - 141

Tony Serra
Typewritten text
 - 141

Tony Serra
Typewritten text
 - 141

Tony Serra
Typewritten text
 - 141

Tony Serra
Typewritten text
 - 144

Tony Serra
Typewritten text
 - 146

Tony Serra
Typewritten text
 - 149

Tony Serra
Typewritten text
 - 149

Tony Serra
Typewritten text
 - 150

Tony Serra
Typewritten text
 - 151

Tony Serra
Typewritten text
 - 151

Tony Serra
Typewritten text
 - 151

Tony Serra
Typewritten text
 - 156

Tony Serra
Typewritten text
 - 157

Tony Serra
Typewritten text
 - 158

EBTKS Overview

The Origin story for EBTKS
(A first person perspective by Philip Freidin. July/August 2020)

This project started off as an attempt to repair the tape drive of an HP-85A desktop computer. Most of
these tape drives (maybe all) have failed because the rubber capstan that moves the magnetic tape in the
DC100/HP98200A cartridges have either disintegrated or turned into goo. My companion web site
documents my Repair Adventures .

Eventually I decided that the repair of the tape drives and the tapes was a lost cause, so I decided that I
would design a Solid State Tape Drive replacement that would be compatible with the existing HP85
operating system, and be responsive to all the same commands. I discussed this with my long time friend
Russell Bull, and together we have co-designed the hardware and the firmware to make it all work. During
our development work, we turned to Everett Kaser for guidance and he soon joined our team and is
responsible for the AUXROMs, which added extensive functionality in the form of over 70 new keywords.

At 2:00 AM on 02/22/2020, I wrote the following to Russell via Skype (lightly edited for PC correctness.):

You know, if we put a Teensy 4.0 (600 MHz A7 Dual issue CPU !!!)
on an I/O board, it should be more than enough to bit-bang 1.6 us
bus cycles, not only could we do solid state replacement of the
tape drive, but some of the 2MB of FLASH could be 8 or more ROMS
(8KB each), and we could also use some of the 1 MB of SRAM to
implement the 16KB RAM module. Could also do ADC/DAC as discussed,
may as well do a RS232 serial interface, and expose I2C and SPI
and a proto area. USB comes along for the ride, Since it is
supported in Arduino land, could also offer it as a CPU offload
engine :-) , using the 85 for keyboard, screen, and printer. My
mind is a-buzz with possibilities, and most are just software that
can be done after the fact. So BOM is for Teensy 4.0, PCB, level
shifters, RS232 cvt and connector, crappy ADC (only ~1 MSPS), no
DAC, but does have I2S and SPDIF....... CAN?, SD card, I2C and SPI
pins? parallel port pins? Some flashing lights :-), PWM? RTC. I'm
done for this message..

Very quickly, Russell did the initial designed of version 1.0 hardware (with a different code name) that was
the basis for our initial feature set discussions. We manufactured the PCB concurrently with an extender
board design (for the HP-85 I/O bus) and had a working prototype by the end of March. We then spent
about 3 months working on the firmware, and finding various issues due to our initial design decisions.
Most of these were related to not having enough I/O pins on the Teensy 4.0 . Around late May we decided
to redesign the board and remove multiple features that we realized we would be unlikely to take
advantage of, but more importantly we changed the processor module to the just released Teensy 4.1 that
you now see in EBTKS V2.0.

(05)

http://www.fliptronics.com/HP85_Repair/index.html
Tony Serra
Typewritten text
(Cont'd)

Along the way we had discussions with various people with more experience with the Series 80
computers (prior to this project neither Russell or I had ever used one), and by far the most helpful is
Everett Kaser. He is now a valuable member of the team, and has worked on creating the AUXROM(s)
that allow many of the features of EBTKS to be realized.

In August, Bob Armstrong joined in to do the first retro-computer add-on.

Like all pictures on this page, click the image for a larger version.

Production build of V3.0 EBTKS

Link to Prototype V2.0 used for most software development

EBTKS Feature List

Provided Services
Tape drive emulation, using the 16 GB SD card to store Tape images. Theoretically the SD card
could hold about 200,000 tape images. To use this service, the existing tape drive must be disabled
by unplugging the two flat-flex cables.
Disk drive emulation, using the 16 GB SD card to store Disk images. The number of disk images will
depend on whether the emulated disk is a floppy or Winchester disk drive. We hope to support
multiple disk drive types.
RAM to fill the top 16 kB of the HP-85A.
Up to 256 kB of Extended memory for HP85B (EDISK), and HP86/87 computers

(06)

http://www.fliptronics.com/EBTKS/_images/EBTKS_V3.0.jpg
Tony Serra
Typewritten text
(Cont'd)

EBTKS provides for up to 18 ROMs to be loaded from the SD card under control of the
CONFIG.TXT file. Due to constraints imposed by the System ROMs, only 14 option ROMs are
supported (one is system ROM 0). This is sufficient for all 12 standard published Option ROMs. The
remainder of the 18 ROMs use a special facility for AUXROMs, discussed later. Currently there are
four required AUXROMs which specifically supports EBTKS.
No Jumper configuration. Configuration of options (like which ROMs are active, initial tape/disk
image loaded) is under control of an easily editable CONFIG.TXT file on the SD card.
Direct access to the CRT to move cursor and read/write text
Improved auto-start program can include multiple commands or a simple batch file.
Only requires 1 slot in the I/O backplane
HELP facility (still in development)
EBTKS Console using serial-over-USB
Other features are still in development
Over 70 New Keywords

AUXERRN AUXREV BOOT CRTCOLS CRTCURSCOL
CRTCURSOR CRTCURSROW CRTGETTOP CRTON CRTREAD$
CRTROWS CRTSETTOP CRTWRITE DATETIME EBTKSREV$
HELP KBDBUFFER KBDISKEY KBDKEY LISTROMS
MEDIA$ MOUNT PEEK POKE RPEEK
RPOKE RSECTOR SDATTR SDBATCH SDCAT
SDCD SDCHAIN SDCLOSE SDCOPY SDCUR$
SDDEL SDEOF SDEOL SDEOL$ SDEXISTS
SDEXPORTLIF SDFFIRST SDFLUSH SDFNEXT SDGET
SDHOME$ SDIMPORTLIF SDLOAD SDLOADBIN SDMKDIR
SDMORE SDOPEN SDPATH$ SDRDLINE SDREAD
SDREN SDRMDIR SDSAVE SDSEEK SDSIZE
SDSLASH SDSLASH$ SDSTORE SDSTOREBIN SDWRITE
SETLED SPRINTF UNMOUNT WSECTOR AUXBUF$
AUXCMD AUXOPT$

Hardware Resources
600 MHz Cortex M7 processor

Processor is an NXP IMXRT1062
Processor module is a Teensy 4.1
1 MB high speed On-Chip RAM
8 MB medium speed RAM external to the processor
Device USB port used for firmware update and diagnostic serial
Host USB port for USB Keyboard and maybe other devices

16 GB SD Card
Two multi color LEDs

(07)

http://www.fliptronics.com/EBTKS/EBTKS_Console.html#ebtks-console
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#auxerrn
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#auxrev
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#boot
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#crtcols
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#crtcurscol
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#crtcursor
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#crtcursrow
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#crtgettop
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#crton
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#crtread
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#crtrows
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#crtsettop
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#crtwrite
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#datetime
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#ebtksrev
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#helpcmd
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#kbdbuffer
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#kbdiskey
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#kbdkey
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#listroms
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#media
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#mount
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#peek
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#poke
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#rpeek
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#rpoke
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#rsector
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#sdattr
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#sdbatch
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#sdcat
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#sdcd
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#sdchain
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#sdclose
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#sdcopy
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#sdcur
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#sddel
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#sdeof
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#sdeol
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#index-69
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#sdexists
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#sdexportlif
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#sdffirst
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#sdflush
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#sdfnext
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#sdget
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#sdhome
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#sdimportlif
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#sdload
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#sdloadbin
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#sdmkdir
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#sdmore
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#sdopen
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#sdpath
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#sdrdline
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#sdread
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#sdren
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#sdrmdir
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#sdsave
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#sdseek
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#sdsize
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#sdslash
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#index-67
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#sdstore
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#sdstorebin
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#sdwrite
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#setled
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#sprintf
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#unmount
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#wsector
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#auxbuf
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#auxcmd
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#auxopt
https://www.pjrc.com/store/teensy41.html
Tony Serra
Typewritten text
(Cont'd)

(08)

Prototype V2.0 used for most software
development
Prototype V2.0 EBTKS standard configuration
(image is missing the SD Card and the QWIIC connector)

Prototype V2.0 EBTKS with optional ESP32 module
(image is missing the SD Card and the QWIIC connector)

(09)

http://www.fliptronics.com/EBTKS/_images/EBTKS_V2.0.jpg
http://www.fliptronics.com/EBTKS/_images/EBTKS_V2.0_with_ESP32.jpg

EBTKS Getting Started

Guide Rails
PVC or HDPE plastic guide rails are CNC machined out of gray PVC type 1 or black HDPE. The left and right
guide rails are sized to match the guide slots in the backplane of your Series80 computer. These come
standard with your EBTKS, unless you specify that you don’t need them because you intend to use a 3D
printed case.

3D Printed Case¶
The design files for a 3D printed case are now available on this page. Getting the case printed will be your
responsibility, the EBTKS team does not provide these cases

What’s in the box
Depending on how you ordered your EBTKS, it is supplied as just the assembled Printed Circuit Board (PCB)
or the PCB with Guide Rails attached

EBTKS without Guide Rails

(10)

http://www.fliptronics.com/EBTKS/EBTKS_3D_Cases_Index.html#ebtks-3d-printable-cases
http://www.fliptronics.com/EBTKS/_images/EBTKS_V3.0.jpg
Tony Serra
Typewritten text
(Cont'd)

EBTKS with Guide Rails

There will be a 16 GB MicroSD Card preloaded with software installed in the Teensy 4.1 module. In case you
may want to do additional development on the Teensy module, or maybe remove it from EBTKS to use in
another project, the standard Teensy 4.1 reference card is included. If you do unplug the Teensy module
(never needed for normal EBTKS use), do it very carefully by slowly levering up each end of the module with
a plastic tool, to avoid damaging the module and the PCB beneath it. The pins on the Teensy 4.1 module are
very thin and easily bent or broken.

EBTKS is Pre Configured
Based on information you provided at the time of your order, EBTKS has been preconfigured to match your
system. This is done with the CONFIG.TXT file which you can edit to change configurations. Please note that
this file has a very specific format, and if you edit it, you must verify that you do not mess up the formatting.
On the just referenced page, there is information about a syntax checker that is easy to use, to check your
changes. There are no user jumpers on EBTKS, every configuration option is controlled by CONFIG.TXT,
which is located in the root directory of the MicroSD Card.

(11)

http://www.fliptronics.com/EBTKS/_images/EBTKS_Rails_Assembled.jpg
http://www.fliptronics.com/EBTKS/Working_with_CONFIG.TXT.html
Tony Serra
Typewritten text
(Cont'd)

MicroSD Card Directory Tree

MicroSD Card Root Directory

Moving EBTKS to a different computer
In the root directory, as well as the CONFIG.TXT file, there are 6 other configuration files, with hopefully
informative names. If you want to change the computer your EBTKS is plugged into another computer that is
not the same model and same configuration, the CONFIG.TXT file will need to be changed to match the new
computer. The easiest way to do this is to delete the CONFIG.TXT file, and make a copy of one of the other 6
files, naming the copy CONFIG.TXT. You should never edit these 6 files, only copies of them. If you do mess
things up, you can always get a pristine copy of the MicroSD Card image from the Download page

(12)

http://www.fliptronics.com/EBTKS/EBTKS_Downloads.html#ebtks-downloads

Time to start playing
(All of the following assumes the standard MicroSD Card file set. The example screen displays are from
a HP85B.)

EBTKS is preconfigured to provide 5 floppy disk drives and one 5 MB Winchester drive (all emulated, the
actual storage is files on the MicroSD Card).

When you start your computer with EBTKS for the first time, it will show the following two screens (the
second one by using the Shift-Roll to scroll up)

First page

(13)

Tony Serra
Typewritten text
(Cont'd)

Second page

These two pages show how the CONFIG.TXT file was processed as the system started, and you should
review the display carefully if you make any changes to CONFIG.TXT . Briefly it shows the following

Starting on the first page above, for which model of Series80 computer the CONFIG.TXT file is
configured.
Whether emulation of the tape drive is enabled (the original goal of EBTKS). Note that for tape
drive emulation to work correctly, the physical tape drive must be disabled by unplugging the two
flat flex cables.
Whether EBTKS provides extended memory, and how much
Whether ROMs are loaded for HP85 (or 83 or 9915) or for HP86/87
Which ROMs are enabled
Seen on the second page above, the association between Mass Storage Unit Specifiers
(abbreviated in HP Mass Storage Manual as msus) and the files that store the Floppy or
Winchester disk image.

This startup display can be disabled in the CONFIG.TXT file by changing the line:

"CRTVerbose": true,
to
"CRTVerbose": false,

The disk image file associated with msus 300 is the initial default Mass Storage device (in the EBTKS
situation, an emulated device), which is shown on the second page above is /disks/EBTKS_1.0_85.dsk

Typing CAT will list the contents of this emulated floppy disk (/disks/EBTKS_1.0_85.dsk)

(14)

Tony Serra
Typewritten text
(Cont'd)

Catalog of msus 300

Some of these programs will run without problems, and some will need editing to match your computer’s
configuration

Here are some simple examples:

The DATE program retrieves the current time and date from the on-board battery backed up clock. It is
set to California time, PDT time zone. It uses a new keyword DATETIME . LIST the program to see how
it works.

(15)

http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#datetime

The DATE Program

The DF program shows the amount of total unused disk space and the largest unused space. (in a
PACKed disk, these are the same). This is an example of a program that needs to be edited depending
on your system. On an HP85B, which always has at least a small EDISK, no editing is needed. On all
other systems, if there is no EDISK, line 110 must be changed as shown in the third image below.

The DF Program (Disk free space)

Running DF on an HP85B

(16)

Tony Serra
Typewritten text
(Cont'd)

Running DF on an HP85A, after editing of line 110

The SINE program is as boring as you would expect it to be, and is not worthy of a screen capture.

The programs are used to test the two RGB LEDs on the back edge of EBTKS.
You can turn the LEDs off with SETLED 3,0,0,0

LED
LEDTEST1
LEDTEST2

Two disk speed benchmarking programs

RWBENCH85A
RWBENCH85B (this can also be used on HP86 and HP87)

were used to get the performance data presented at the end of this forum article . The program will
probably need editing depending on whether you have EDISK enabled, and whether you have an
HP9121 floppy disk drive attached via an HPIB interface with a msus of 700

The EBTKS-TEST program checks multiple parts of EBTKS, and does not need any editing. On an
HP85B it takes about 45 seconds to run. Here are the expected two screen pages:

(17)

http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#setled
https://groups.io/g/hpseries80/message/5616
Tony Serra
Typewritten text
(Cont'd)

Running EBTKS-TEST on an HP85B, page 1

Running EBTKS-TEST on an HP85B, page 2

Pressing CONT will repeat the test and increment the PASS count.

(18)

The Directory Tree diagram near the top of this page shows many directories.
This is documented in detail here A Guided tour of the MicroSD Card

Here is a brief summary.

root covered above

BAS

BASIC programs in ASCII source form.
SDSAVE /BAS/DF.BAS stores the DF program in source form
SDGET /BAS/DF.BAS loads the source file DF.BAS
If these .BAS files are transferred to a PC, they can be edited with a text editor

disks This is where the disk image files reside
EK_Disks This is a copy of all the disk images found in Everett Kaser’s Series80 emulator
help85 All the help text for HP85A/B are in this subtree. This is still a work in progress

help87
All the help text for HP86A/B and 87/87XM are in this subtree. This is still a work in
progress

Original_images Disk and tape images of blank media. Used when creating a new Disk or Tape

Printers
Output that would normally go to the printer can be redirected to a file in this
directory

roms85 All of the available ROMs compatible with HP85A/B
roms87 All of the available ROMs compatible with HP86A/B and HP87/87XM
tapes This is where the tape image files reside. unused on HP86A/B and 87/87XM
testfiles A test directory used during development, and by EBTKS-TEST

TOK

BASIC programs in tokenized form. Functionally the same as saved programs in the
emulated disks.
SDLOAD /TOK/DF.TOK loads the DF program.
SDSTORE /TOK/DF.TOK saves the DF program in tokenized form.

EBTKS Configuration
The checklist page that is included with your EBTKS lists the initial settings for your EBTKS. These are
included in the CONFIG.TXT file that is in the root directory of the provided SD Card.
See Working with CONFIG.TXT for details of how to make changes to this file.
The checklist also lists the expected configuration of your system, with regard to the following:

Is the tape drive connected (for HP85A and HP85B)

It is expected that there is no ROM module or other ROM card installed as EBTKS should be able
to provide all the ROMs you need

On HP85A, don’t install an extra 16 KB memory module as EBTKS can provide this memory.

On HP85B, EMC memory modules can be used for EDisk. See EMC for details.

What else is on the MicroSD Card

(19)

http://www.fliptronics.com/EBTKS/MicroSD_Card_Tour.html#a-guided-tour-of-the-microsd-card
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#sdsave
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#sdget
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#sdload
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#sdstore
http://www.fliptronics.com/EBTKS/Working_with_CONFIG.TXT.html#working-with-config-txt
http://www.fliptronics.com/EBTKS/Working_with_CONFIG.TXT.html#extended-memory-control-emc
Tony Serra
Typewritten text
(Cont'd)

Typically, a HP85B has 3 option ROMs pre-installed on the main board:

I/O (Octal 300)
Mass Storage (Octal 320)
EDisk (Octal 321)

Do not enable these ROMs on EBTKS on an HP85B system, as it will cause incorrect operation.
A similar constraint exists for HP86A/B and HP87/87XM pre-installed ROMs.

EBTKS uses module select code 3 for an emulated HPIB interface that is the gateway to emulated
floppy disk drives and emulated hard disk drives. It is also used for an emulated printer Therefore,
if you have a real HPIB interface module plugged in for

Other real disk drives
Test and Measurement equipment
Data acquisition
Printers
Plotters
Emulated disks that connect over real HPIB

the real HPIB interface must not use select code 3. By default, HP ships HPIB interface modules
with select code 7.

As you will see on the Working with CONFIG.TXT page you can make edits to the file by putting the SD
Card into a PC and using a simple text editor like notepad.

This allows changing the initial disk and tape drive assignments to various LIF image files. Even though
it looks like you can add new additional sections following the existing format, please don’t, as things will
probably break. At a later time, hopefully an EBTKS owner will write a utility program that runs on the
HP85 and automates simple changes to the CONFIG.TXT file.

Note:

CONFIG.TXT is an ASCII text file in JSON format. Editors like WordPad and MSWord add
additional information like character height, font selection, and other formatting control. This
will corrupt the file.
While Notepad can be used for editing CONFIG.TXT, another far superior free editor that
does not add formatting is Notepad++ which can be found with Google Search.
For Linux/Unix systems, suitable editors include VI, VIM, EMACS, Nano, Atom, Gedit.

A few New Keywords
The following are useful initial keywords to check the firmware and AUXROM versions, and which ROMs
have been loaded. These are all just typed at the BASIC prompt. See AUXROM Keywords for the full list
of over 57 new keywords, with more detailed explanations and examples

(20)

http://www.fliptronics.com/EBTKS/Working_with_CONFIG.TXT.html#working-with-config-txt
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#auxrom-keywords
Tony Serra
Typewritten text
(Cont'd)

AUXREV
Returns the AUX ROMs revision# (from ROM 361)

EBTKSREV$
Returns a string containing date and time of building the EBTKS firmware

LISTROMS 0
Displays all the possible ROMs for HP85/86/87 and their Octal/Decimal ID number

LISTROMS 1
Displays currently installed ROMs and their Octal/Decimal ID number. AUXROMS are loaded as a
set with Octal IDs 361, 362, 363, 364. LISTROMS will only list the first one

Links
EBTKS Downloads

Updating the EBTKS Firmware

AUXROM Keywords

Connecting the serial diagnostic port

Highlights
There are several help pages that list the available commands. Just type the number 0 to 6 and enter to
get a short help page.

The serial diagnostic port Help
This section of EBTKS is likely to change since it is primarily a debug tool for the EBTKS developers

Here are the 7 pages of help

EBTKS> 0

EBTKS Control commands - not case-sensitive

0 Help for the help levels
1 Help for Display Information
2 Help for Diagnostic commands
3 Help for Directory and Time/Date Commands
5 Help for Developers
6 Help for Demo

(21)

http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#auxrev
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#ebtksrev
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#listroms
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#listroms
http://www.fliptronics.com/EBTKS/EBTKS_Downloads.html#ebtks-downloads
http://www.fliptronics.com/EBTKS/Updating_the_EBTKS_Firmware.html#updating-the-ebtks-firmware
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#auxrom-keywords
Tony Serra
Typewritten text
(Cont'd)

EBTKS> 1
Commands to Display Information
show ----- Show commands have a parameter after exactly 1 space
 log Show the System Logfile
 boot Show the messages from the boot process, sent to Serial port
 CRTboot Show the messages sent to the CRT at startup
 config Show the CONFIG.TXT file
 media Show the Disk and Tape assignments
 mb Display current mailboxes and related data
 CRTVis Show what is visible on the CRT
 CRTAll Show all of the CRT ALPHA memory
 key85_O Display HP85 Special Keys in Octal
 key85_D Display HP85 Special Keys in Decimal
 key87_O Display HP87 Special Keys in Octal
 key87_D Display HP87 Special Keys in Decimal
 other Anything else is a file name path

EBTKS> 2
Commands for Diagnostic
la setup Set up the logic analyzer
la go Start the logic analyzer
addr Instantly show where HP85 is executing
kbdcode Show key codes for next 10 characters in the keyboard byffer
clean log Clean the Logfile on the SD Card
sdreadtimer Test Reading with different start positions
SDCID Display the CID information for the SD Card
PSRAMTest Test the 8 MB PSRAM. You probably should do the PWO command when test has finis
ESP32 Prog Activate a passthrough serial path to program the ESP32
pwo Pulse PWO, resetting HP85 and EBTKS

EBTKS> 3
Directory and Date/Time Commands
dir tapes Directory of available tapes
dir disks Directory of available disks
dir roms Directory of available ROMs
dir root Directory of available ROMs
Date Show current Date and Time
SetDate Set the Date in MM/DD/YYYY format
SetTime Set the Time in HH:MM 24 hour format
adj min The U and D command will adjust minutes
adj hour The U and D command will adjust houres
U Increment the time by 1 minute or hour
D Decrement the time by 1 minute or hour

EBTKS> 4
Commands for Auxiliary programs

EBTKS> 5
Commands for Developers (mostly Philip)
crt 1 Try and understand CRT Busy status timing
crt 2 Fast CRT Write Experiments
crt 3 Normal CRT Write Experiments

(22)

Tony Serra
Typewritten text
(Cont'd)

Tony Serra
Typewritten text
hed

crt 4 Test screen Save and Restore
crt 5 Test writing text to HP86/87 CRT

EBTKS> 6
Commands for Demo
graphics test Set graphics mode first
jay pi Jay's Pi calculator running on Teensy

Boot logging
Every time EBTKS starts up it creates three logs.

Short list of ROM and Disk Mounts can be sent to the CRT. Can be disabled in CONFIG.TXT from
being displayed
A detailed report on the processing of the CONFIG.TXT file. Always sent to the serial diagnostic
port.
A similar report to the report that is sent to the serial diagnostic port, is appended to a log file on the
MicroSD Card

(23)

MicroSD Card Directory Tree

Content coming soon

For now, here is MicroSD Card Summary

(24)

A Guided tour of the MicroSDCard

http://www.fliptronics.com/EBTKS/EBTKS_Getting_Started.html#microsd-card-summary

Working with CONFIG.TXT
In the root directory of the SD Card there is a file named CONFIG.TXT . It contains all the
configuration information for EBTKS. This file is read when the Series80 computer starts up,
and all the configuration is completed before the Series80 computer presents its first prompt to
the user. The file format is JSON, and as such, it depends on a very specific format for the
various entries, and the way that sections are nested. At the time of writing this page of the
documentation, the best way to make changes to CONFIG.TXT is to do the editing and format
verification on you PC, as there is no convenient way to do it directly on the Series80 computer.

Before you get
started

Validating CONFIG.TXT

System Settings Settings for Series80 model and Boot messages
Tape Drive Configuring the emulated Tape Drive
ROMs Section Select the directory for ROM images
ROM Entries Configuring which ROMs are enabled. LISTROMS keyword
Disk Drives Disk Drive emulation overview
- msus$ How the msus$ strings refer to disk drives
- Disk Config Mapping of Disk configuration to msus$
- Disk L1 Level 1, specifying the HPIB Select code
- Disk L2 Level 2, specifying the HPIB Device number
- Disk L3 Level 3, specifying the drives and LIF files
- Condensed A condensed view of the Disk Drives section of CONFIG.TXT
Printers Printer output to a file
AutoStart Automatically run a program at startup
- From Tape Traditional run Autost from emulated tape drive and tape
- From CONFIG.TXT Initial commands are stored in a string in CONFIG.TXT

- From a batch file
Initial commands are stored in a batch file that is specified in
CONFIG.TXT

EMC
Configuring Extended Memory for HP 85B, HP86 and HP87
computers

- 85B Setting StartBank parameter for HP85B with no EMC modules

- 85B with EMC cards
Setting StartBank parameter for HP85B with one or more EMC
modules

- 86A/B , 87/87XM Setting StartBank parameter for HP86A/B, HP87/87XM
CONFIG.TXT A complete example of CONFIG.TXT

(25)

Before you get started
Top

As mentioned above, the CONFIG.TXT file is in JSON format. The EBTKS reader and parser
expect the file to be syntactically correct, and since it is processed during system startup, if
there are errors (a missing comma, non-matching curly-brace) the failure won’t be reported, but
your system won’t start up correctly. Fortunately, there is a JSON file format checker available
on-line that can be used to validate that any edits that you make to this file haven’t broken any
rules.

So, let’s get comfortable with using the format checker, before we make any changes, so you
will know what the results should be if you have made a mistake, or if you did your edits
correctly.

1. Copy the CONFIG.TXT file from the SD Card to your desktop/laptop computer, and open
the file in a text editor, like notepad (on a windows PC). There is also an example of
CONFIG.TXT for a HP85A at the bottom of this page.

2. Open this link in a browser: ArduinoJson Assistant

3. Set the configuration as shown:

Processor: STM32
Mode: Serialize
Output type: Stream

(26)

https://arduinojson.org/v6/assistant/
Tony Serra
Typewritten text
(Cont'd)

Then click the button labeled “Next: JSON”

4. Select all the text in the text box labeled “Output” box, and delete it.
(on a Windows PC, click inside the box, type Ctrl-A to select all, then the delete key)

5. In the text editor that is showing CONFIG.TXT, select all the text and copy it to the
clipboard.
(on a Windows PC, click anywhere on the text in the editor and type Ctrl-A to select all,
then type Ctrl-C to copy it all to the clipboard)

6. Paste the clipboard contents into the ArduinoJson Assistant Output box.
(on a Windows PC, click anywhere inside the box, and type Ctrl-V)

7. Scroll the “Output” box to the top, and it should look something like this:

(27)

http://www.fliptronics.com/EBTKS/_images/ArduinoJson_1.jpg
Tony Serra
Typewritten text
(Cont'd)

Don’t worry about the squiggly red lines under some of the text. On my browser this is just
automatic spell checking getting confused. You may or may not see this depending on
your operating system and browser. It does not indicate an error.
In particular, note that at the bottom left corner of the Output box, it shows “Input length:
4150” and the text is black/gray. This indicates that there are no errors in the JSON
formatting.

8. Now delete one of the commas at the end of a line, or a quote character, or a colon.
You should instantly see the message at the bottom left corner of the Output box turn red,
and indicate that there is an error, and where the error has occurred. Restore the deleted
character and the Input length message should return.

As just demonstrated, you can edit the CONFIG.TXT directly within the ArduinoJson Assistant
window, after you copy CONFIG.TXT to that window. This will give you continuous live updates
of whether the text is JSON syntax valid. When you are done editing (and the syntax has been
validated), you can select all the text with Ctrl-A , copy to clipboard Ctrl-C, and then paste it
back into notepad (or whatever) with Ctrl-V. Then save the updated CONFIG.TXT with Ctrl-S.
The updated CONFIG.TXT should then be copied back to the root directory of the SD Card

When making any edits to CONFIG.TXT you must at a minimum do the above test after you
have completed your edits. While getting the “Input length” message indicates there are no

(28)

https://arduinojson.org/v6/assistant/
Tony Serra
Typewritten text
(Cont'd)

OK, now let’s look at the various sections of CONFIG.TXT

System Settings
Top

1 "machineName": "HP85A",
2 "CRTVerbose": true,
3 "ram16k": true,
4 "screenEmu": true,
5 "CRTRemote": true,

The first line (“machineName”) specifies the Series80 model number. The EBTKS firmware uses
this information to enable certain features and to check some of the setting specified in the
CONFIG.TXT file

“HP83” “HP9915A” “HP85A”
“HP85AEMC” “HP85B” “HP9915B”
“HP86A” “HP86B” “HP87”
“HP87XM”

Line Explanation

2
If true, the extended Boot Message is sent to the Series80 CRT. This includes which
ROMs are active, and the associations between msus$ and LIF Files

3 For the HP85A only, EBTKS can provide 16 KB of RAM if this parameter is set true.
4 Under development, always set true at this time
5 Under development, always set true For HP85A/B and false for HP86/87

Top

syntax errors in your CONFIG.TXT file, you still need to be very careful of all file pathnames, and
spelling of parameter values, since the ArduinoJson Assistant will not catch those types of errors. All
text values must be quoted. The true and false parameters values must not be quoted, and they are
checked by ArduinoJson Assistant.

(29)

1 "tape": {
2 "enable": true,
3 "filepath": "/tapes/tape1.tap"
4 },

Tape Emulation Configuration
Line Explanation
1 This is the configuration section for the tape drive emulation.

2

Controls whether the section is enabled, which is only allowed on HP85A and HP85B.
The whole section has no effect if this parameter is set to false. If this section is
enabled, the real tape drive in the HP85A or HP85B must be disabled, which can be
done by unplugging the two Flat-Flex cables to the tape drive.

3
Specifies the directory path and file name for the LIF Image file that represents an
emulated tape.

4
This is the end of the configuration section. A trailing comma is required if this section is
followed by another section at the same logical indent level

ROMs Section
Top

EBTKS can support up to 20 Option ROMs, four of which are the AUXROMs, which must always
be present. The rest are optional. Option ROM 000 is built into all Series80 computers. All other
option ROMs are bank- switched into the same address space, so only one can be active at any
time. It is likely that some will always be required for the HP85A if you want to use the Disk Drive
emulation (rom320B and rom321B), and some should not be enabled because they are pre-
installed in the computer (HP85B usually has 3 Option ROMs pre-installed). The ROMs section of
the CONFIG.TXT file is a nested structure. The outer part specifies that it is the ROM section, and
the default directory on the SD Card where all the ROM images are stored. The inner part of the
ROM section starts with [and ends with]. Here is the outer section, which you will probably never
need to change.

1 "optionRoms": {
2 "directory": "/roms85/",
3 "roms": [
4
5 Multiple ROM entries (see next section), each of which
6 ends with a comma except the last ROM entry
7
8]
9 },

Tape Drive

(30)

Tony Serra
Typewritten text
(Cont'd)

Line Explanation
1 This is the configuration section for the Option ROMs.

2
The default directory for the ROM images is /roms85/
On an HP86 or HP87 this would be /roms87/
The directory string must include the leading and trailing slash character /

3 Start of the inner section

5
The inner sections go here, each is 6 lines long, and all end with a comma except the
last one.
See the next section

8 End of the inner section

9
End of the Option ROMs section. A trailing comma is required if this section is followed
by another section at the same logical indent level

ROM Entries
Top

For each Option ROM, there is an entry within the ROM Section, described above.
If the entry is disabled (enable set to false), then it does not consume any memory in EBTKS.
Enabled ROMs each consume 8k bytes, from a memory region that has pre-allocated room for 18
ROMs. Four of these must always be the AUXROMs. The remaining 14 can be used for any
combination of Option ROMs. Another restriction on the number of ROMs that can be enabled is
that for the HP85A/B there can be no more than 14 Option ROMs. For the HP86/87 it is 15 Option
ROMs. When counting ROMs, the built in ROMs must be include, and although EBTKS requires
4 AUXROM ROMs, they only count as 1 in this calculation of the system bases restriction (14 or
15) but they do count as 4 ROMs with regard to the allocated memory for 18 total. If you do the
math, you will see that room for 18 ROMs is just enough.

To summarize the above:

For an HP85A ROMs 000 and the AUXROMs count as 2 total, allowing for up to 12
additional Option ROMs.
For an HP85B ROMs 000, 300 (I/O), 320(Mass Storage), 321(EDisk) pre installed and
AUXROMs counts as 5, allowing for up to 9 additional Option ROMs.
For an HP87 ROMs 000, 001 (87 Graphics), 320(Mass Storage) pre installed and
AUXROMs counts as 4, allowing for up to 10 additional Option ROMs.
For an HP87XM ROMs 000, 001 (87 Graphics), — needs to be checked —

In general, you should only enable the ROMs you need, as enabling ROMs you don’t need will
slow down some of the Series80 computer functions. Another very important rule is that you must

ROM Configuration, outer part

(31)

Tony Serra
Typewritten text
(Cont'd)

not enable two copies of the same ROM. This could happen if your Series80 has a ROM draw,
the EPROM module or PRM-85 plugged in (which should not be needed, since EBTKS can
provide the ROMs), or if they are pre- installed on the computer’s main board, which is the case
for all Series80 computers except the HP85A.

The order of the ROM entries does not matter.

If you are not sure which ROMs are pre-installed on your Series80 computer, edit the
CONFIG.TXT file so that all the ROMs are disabled except for the four AUXROMs. Then start
your Series80 computer and enter the command

 LISTROMS 1

and it will list the installed ROMs.
Note: For the AUXROMs, it will only list the first AUXROM, Octal 361.

Example ROM Entry

ROM Entry, inner part
Line Explanation
1 Start of a ROM entry

2
Documentation text about the entry, so you don’t have to remember what each ROM
number means

3 The functional name of the ROM

4
File name for the ROM image. This is appended to the directory specified in the outer
section. See line 2 in the previous section. These files must be exactly 8192 bytes in
length

5
Whether to enable the ROM. Either true or false, without quotes. Note that there is no
trailing comma, as this is the last line at this level within this block

6 End of a ROM entry

Top

(32)

1 {
2 "Note": "For 85B floppies and 5, 10 MB hard disk. Use with rom321B, can be used on
3 "description": "85B Mass Storage",
4 "filename": "rom320B",
5 "enable": true
6 },

Tony Serra
Typewritten text
85A",

 can support multiple emulated disk drives. Currently two types are supported:

The disk emulation is dependent on a limited functionality HPIB emulation that is also
implemented by EBTKS. In particular the HPIB emulation only provides sufficient functionality for
the disk and printer emulation, but does not implement a physical HPIB, and there is no HPIB
physical connector for you to connect other HPIB devices. The emulated HPIB behaves like an
HPIB controller (HP82937A), and so standard HP software Option ROMs like the Mass Storage
ROM (320 Octal) and the I/O ROM (300 Octal) can communicate with it, and can’t tell that there is
no physical HP82937A implemented by EBTKS.

By default the real HP82937A is shipped with a select code of 7, and EBTKS is designed to co-
exist with one being plugged in. You might want to do this if you have real disk drives or you may
be using HPIB to control electronic test equipment or data acquisition products.

To avoid conflict, by default the EBTKS emulated HPIB uses select code 3.

Understanding the msus$ strings
Top

HP disk drives that connect to the Series 80 computers via HPIB are organized into three levels:

HPIB Select Code
Device number on the selected HPIB Select Code

Drive Drive number that is contained in the specified Device number

Physically this is implemented as follows:

The HPIB Select Code is associated with a specific HPIB interface plugged into the back of
the Series80 computer
The Device is a box with power supply and one or disk drives that connect to the HPIB
interface via a HPIB cable
Within the Device box there are one or more Disk drives, usually numbered as Unit 0, 1, …

In Series80 BASIC, specific drives are referenced with a msus$ string. The format is “:Dsdu”,
where s, d, and u are

s - The Select Code

d - The Device Number
u - The Unit Number

Floppy disks with 1040 data blocks (266,240 bytes, usually just referred to as 256 KB) not
including the directory area
Hard disks with 18832 data blocks (4,820,992 bytes, usually referred to as 5 MB) notincluding
the directory area

(33)

Tony Serra
Typewritten text
Disk Drives

Tony Serra
Typewritten text
(Cont'd)

Tony Serra
Typewritten text
EBTKS

EBTKS, all this is emulated, but the end result is that you use the same msus$ string as you
would with physical HPIB interface, cable, disk drive box, and the disk drives within it.

Disk Drives Configuration
Top

Just as the msus$ implements a 3 level hierarchy to get to the specific disk drive unit, the
CONFIG.TXT file similarly uses a 3 level JSON structure to achieve the same thing. There is a 1-
to-1 mapping between the msus$ and the layout of this section of CONFIG.TXT

Disk Drives, Level One

Top

The first level specifies the emulated HPIB interface, and it only has one parameter, the select
code.

1 "hpib": {
2 "select": 3,
3 "devices": [
4
5 Multiple Device sections, each start with { and end with }
6 There is a comma after each } , except for the last one.
7
8]
9 }

Disk Drives, Level One
Line Explanation
1 Start of the HPIB entry
2 Specifies the Select Code for the Emulated HPIB interface
3 The start of an array (list) of devices, indicated by the [character

5
The Devices list (equivalent to a Disk Drive case with power supply and one or more
drives) is made up of one or more sections, each starting with { and ending with }

6
Without showing the content, an example array would be {}, {}, {}, {} . Note that there is
no trailing comma after the last Device section

8 The closing] indicates the end of the array of devices

Line Explanation
9 End of a HPIB entry

(34)

Tony Serra
Typewritten text
(Cont'd)

Tony Serra
Typewritten text
Therefore, ":D300 refers to HPIB Select code 3 (EBTKS default), Device box 0, Unit 0. In

Disk Drives, Level Two

Top

The second level is an array (list) of Devices (equivalent to a disk drive box that has one or more
disk drives). As described in level one (above), each entry starts with a { and ends with }. If an
entry is followed by another, there is a separating comma.

 1 {
 2 "Comment": "All blocks must have different device numbers",
 3 "type": 0,
 4 "device": 0,
 5 "enable": true,
 6 "drives": [
 7
 8 Multiple Disk Drive sections, each start with { and end with }
 9 There is a comma after each } , except for the last one.
10
11]
12 },

Disk Drives, Level Two
Line Explanation
1 Start of a Device entry
2 A reminder that device numbers need to be unique.

3
Specifies the type of Disk drives being emulated. All the Drives for a given Device must
be the same type. Type 0 is a 256 KB floppy, type 4 is a 5 MB hard drive (all emulated,
no hardware other than EBTKS)

4 The Device number that must be unique. Can be 0 through 7

5
The Device can be enabled/disabled. If disabled, it will disable all the Disk Drives for
this Device. Equivalent to turning the power off to the Disk Drive box

6 The start of an array (list) of Disk Drives, indicated by the [character

8
The Disk Drive array is a list of the Disk Drives within a Device (Disk Drive Box). Each
Disk Drive is specified with a block that starts with { and ends with }

9
Without showing the content, an example array would be {}, {}, {}, {} . Note that there is
no trailing comma after the last Disk Drive section

11 The closing] indicates the end of the array of Disk Drives
12 End of a Device entry

(35)

Tony Serra
Typewritten text
(Cont'd)

Disk Drives, Level Three

Top

The third level is an array (list) of Disk Drives (that are within a Disk Drive Box). As described in
level two (above), each entry starts with a { and ends with }. If an entry is followed by another,
there is a separating comma. So, at last we get to the Disk Drives (emulated)

1 {
2 "Comment": "msus$ 300",
3 "unit": 0,
4 "filepath": "/disks/BETAUTIL.DSK",
5 "writeProtect": false,
6 "enable": true
7 }

Disk Drives, Level Three
Line Explanation
1 Start of a Disk Drive entry

2

Document what the msus$ is for this Disk Drive instance. The first digit is the HPIB
Select code, the second digit is the Device Number, and the third digit is this specific
Disk Drive within the specified Device. Within a specific Device, the Disk drive numbers
must be unique, and are between 0 and 3

3 The Disk Drive Number, 0 through 3

4

Each Disk Drive must be associated with a file on the SD Card that holds the data of the
emulated Disk that is currently loaded into a Disk Drive. If the Drive is a Floppy Disk
Drive for example, the specified file represents a Floppy Disk. This line specifies the
directory path and file name for the LIF Image file that represents an emulated disk. File
names and paths are not case sensitive

5
WriteProtect is a place holder at the time of writing this documentation. It may be
implemented some time in the future

6

Each Disk Drive can be individually enabled. If it is disabled (set this parameter to
false), the Disk Drive cannot be enabled until the CONFIG.TXT file is modified and the
Series80 computer is rebooted. MOUNTing a LIF file on a disabled Disk Drive will not
work. (equivalent to putting a floppy disk in a drive that has the power off)

7 End of a Disk Drive entry

Top

(36)

Tony Serra
Typewritten text
(Cont'd)

Without all the details described above, here is the structure overview of the Disk Drive section of
CONFIG.TXT that is listed at the bottom of this page. The indent levels directly relate to the
above descriptions.

The description specifies 4 floppy drives with msus$ of 300, 301, 320, 321. Two 5 MB hard drives,
but only one is enabled with msus$ of 330, and finally an emulated printer with device number
310 (which is not a msus$). The printer section will be discussed in the next section, but it is
referred to here because it is emulated as a device connected to the emulated HPIB, and so
appears in the same section as the Disk Drives.

If your browser window is narrow, the text below may be clipped on the right side. If this happens,
there is a scroll bar at the bottom of the page that you can adjust to see all the text

 1 "hpib": {
 2 "select": 3,
 3 "devices": [
 4 { Device 0, Type 0 (Floppies), LIFs are in /disks/
 5 [An Array of Floppy Disk Drives
 6 {Floppy drive 0, msus$ is 300,
 7 LIF file is /disks/BETAUTIL.DSK} ,
 8 {Floppy drive 1, msus$ is 301,
 9 LIF file is /disks/85Games1.dsk}
10] end of an array of floppies
11 },
12 { Device 2, Type 0 (Floppies), LIFs are in /disks/
13 [An Array of Floppy Disk Drives
14 {Floppy drive 0, msus$ is 320,
15 LIF file is /disks/85Games2.dsk} ,
16 {Floppy drive 1, msus$ is 321,
17 LIF file is /disks/85GamesMisc.dsk}
18] end of an array of floppies
19 },
20 { Device 3, Type 4 (5 MB Hard drive), LIFs are in /disks/
21 [An Array of 5 MB Hard Disk Drives
22 {5 MB Hard Disk drive 0, msus$ is 330,
23 LIF file is /disks/5MB_scr.dsk} ,
24 {5 MB Hard Disk drive 1, msus$ is 331,
25 LIF file is -none- because not enabled}
26] end of an array of hard drives
27 },
28 {
29 the HPIB printer is also a device on the emulated
30 HPIB bus. See the next section
31 }
32] end of array of devices
33 } end of hpib

Disk Drives, putting it all together

(37)

Top

EBTKS can support multiple emulated HPIB printers, that take the data that is output to the
printer and redirects it to be written to a file on the SD Card. This should not be interpreted as
multiple models of HP printers, just multiple instances of very simple text only printers. The
emulated printer(s) appear as an HPIB device, and so the configuration is included in the HPIB
part of the CONFIG.TXT file, after the disk drive sections. Given the default HPIB select code of
3, the emulated printer has a default device number of 10, and thus the full device number is 310.
This should not be confused with a msus$ of 310, but is the reason that in the disk drive section
above, we skipped device 1, and used device 0, 2, and 3 to avoid possible confusion.

To use this printer redirection capability, the Printer/Plotter ROM must be enabled.

To activate the redirection of PRINT statements from sending text to the built-in printer, run this
command:

 PRINTER IS 310

After executing this statement, printer output is appended to the designated file. To return to
output going to the built in printer, run this command:

 PRINTER IS 2

1 {
2 "Comment": "Device 10 on HPIB select code, i.e. 310",
3 "printer": "",
4 "device": 10,
5 "enable": true,
6 "filepath": "/printers/printfile.txt"
7 }

Disk Drives, Level Three
Line Explanation
1 Start of the Printer entry

2
Document what the Device ID is for the Printer. The first digit is the HPIB Select code,
the remaining two digits are the device id on that (emulated) HPIB bus

3
This line identifies this section as an emulated printer section, rather than a Disk Drive
section.

4
The emulated Printer device number can be 0 to 31, but I recommend 10 to 31 to avoid
confusion with Disk msus$

5
The emulated Printer can be individually enabled. If it is disabled (set this parameter to
false), directing print data to the SD Card will not be available.

6 The emulated Printer must be associated with a file on the SD Card that receives the
printed text. This line specifies the directory path and file name for that file. File names

Printers

7 End of a Printer entry (38)

Tony Serra
Typewritten text
and paths are not case sensitive

Tony Serra
Typewritten text
.

AutoStart
Top

For HP85A and HP85B (Series80 computers with Tape Drives), if a tape cartridge is already in
the tape drive when power is turned on, and if the tape contains a program named “Autost” (this is
case sensitive), the program will be loaded from the tape and run. If the program is not near the
beginning of the tape, this may take quite a while. Even if there is no “Autost” program on the tape
(including an EBTKS emulated tape and tape drive), the directory needs to be read, and with that,
the CRT is turned off while this occurs (standard behavior of HP85A/B to save power) just as the
system is starting up. EBTKS supports this on the emulated Tape drive, but also provides some
enhanced capabilities.

Autostart from Tape
Top

To enable the standard Autost program from the emulated tape drive, the parameters “enable”
and “enableTapeAutostart” should both be set to true, “command” and “batch” should both be
empty strings.

1 "AutoStart": {
2 "enable": true,
3 "enableTapeAutostart": true,
4 "Note": "Max command is 256 characters",
5 "command": "",
6 "batch": ""
7 }

Automatically enter commands from
CONFIG.TXT
Top

EBTKS supports initial commands copied from the CONFIG.TXT file onto the CRT and then run.
This is done by pretending to be characters coming from the keyboard as soon as the Series80

(39)

Tony Serra
Typewritten text
(Cont'd)

computer has completed booting up. You will actually see the commands appearing on the CRT
when this is done. The command string in CONFIG.TXT can be up to 256 characters, and must
be on a single line. All of the special keys on the keyboard can be entered by using their 3 digit
octal value preceded by a double back slash.
Here is a link to the Octal codes . When entering octal codes in the “command”: parameter, each
octal code must be preceded by two back slash characters. Since the ENDLINE character can
used in the string, multi-line commands are possible.

Some common codes to build a command string

Batch files have different rules, see section below

Desired Key Code to use
CLEAR (Clear Screen) \\222

-LINE (clear to end of line) \\240

" (double quote) \\042 or \"

ENDLINE \\232

RUN \\215

DOWNCURSOR \\242

\ (backslash) \\134

With EBTKS installed, depending on the setting of CRTVerbose, the CRT may be displaying
many lines of text or a clear screen. As you know, when you type a command, if there are
characters on the line after the command you have typed, it will mess up your command. For
HP85A/B, you must also make sure that the previous line does not have a character in the last
position (character position 32) as that will cause the previous line to be treated as part of the
command too. There are a few strategies that could work here:

A. Clear the screen before entering commands using octal \\222 at the beginning of the
command.

B. Clear the current line with “-line” code \\240, then move down 1 line (\\242) and clear that
line as well (\\240), then enter the desired command. So the beginning of “command” would
be
“\\240\\242\\240 rest of the command”
This sequence assumes the cursor is in column 1, which is true at system start.

C. Roll the screen down two lines, since we know at initial start, the prior two lines (CRT buffer
lines 62 and 63) will be blank the beginning of “command” would be \\237\\237 as seen in
the example.

(40)

http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#octal-codes
Tony Serra
Typewritten text
(Cont'd)

1 "AutoStart": {
2 "enable": true,
3 "enableTapeAutostart": false,
4 "Note": "Max command is 256 characters",
5 "command": "\\237\\237LOAD \\042LEDTEST2\\042\\232RUN\\232",
6 "batch": ""
7 }

The rest of the example is made up of the following pieces

LOAD which is the standard load command
\\042 which is the double quote character at the start of a file name for the load command
LEDTEST2 which is the name of the program to be loaded
\\042 which is the double quote character at the end of a file name for the load command
\\232 which is the endline key, thus finishing the LOAD command, and causing the program
to be read from the default storage device and placed into memory. With default settings of
EBTKS, this would fetch the LEDTEST2 program from “:D300”
RUN followed by \\232 will now run the program.

Using this form of autostart allows quite complex startup, limited by the requirement that the
command string is no more 256 characters.

Top

EBTKS supports initial commands from a batch file that is specified in the CONFIG.TXT file. As
detailed in the previous section, you must be aware of what might already be on the screen that
could interfere with the command that are in the batch file. The same 3 strategies are available.
There are three differences between the batch file approach to autostart and the single string
described in the previous section.

1. You are not limited to 256 characters
2. Octal constants only have a single backslash \ preceding octal key codes
3. You don’t need to use \232 for the end of line character, or \042 for the double quote

characters. Normal ends of lines in the batch file will be interpreted as the end line that the
HP85 expects.

To use this version of Autostart, let’s look at an example:

1 "AutoStart": {
2 "enable": true,

To use this version of Autostart, let’s look at an example that uses the third option:

Automatically enter commands from a batchfile

(41)

Tony Serra
Typewritten text
(Cont'd)

3 "enableTapeAutostart": false,
4 "Note": "Max command is 256 characters",
5 "command": "",
6 "batch": "autoexec.bat"
7 }

The contents of the batch file could be:

1 LOAD "LEDTEST-1"
2 RUN

Unlike the batch files on Windows OS systems, this batch capability is very simple. Just the
sequential transfer of text.

Extended Memory Control (EMC)
Top

EBTKS can provide up to 256 kB of Extended Memory for HP85B, HP86A/B, HP87/XM.
(256 kB at the time of writing this documentation. This may change in the future).
On the HP85B the only use for this memory is the Electronic Disk. Given the SD Card based disk
emulation provided by EBTKS, this is probably of no practical use. On the HP86 and HP87
computers, this increases the available memory for program and data. Extended Memory is not
support on the HP85A (unless a circuit modification is made which would make it compatible with
the HP85B in this regard, but as for the HP85B, this would be of little utility).

Extended memory is measured in Banks which are 32 kB each, so 256 kB of memory is 8 Banks.
You can enable any number of banks from 0 to 8. The NumBanks parameter sets the number of
Banks of Extended Memory that EBTKS will provide.

Setting the starting bank number StartBank requires some minor calculation. Follow these steps:

StartBank for HP85B with no additional EMC
modules

1. Set the EMC section of CONFIG.TXT in the root directory of the SD Card to the following

1 "EMC": {
2 "enable": true,
3 "NumBanks": 8,
4 "StartBank": 3
5 }

(42)

Tony Serra
Typewritten text
(Cont'd)

StartBank for HP85B with additional EMC
modules

1. Unplug EBTKS from your system and plug in the extended memory modules you plan to
use with EBTKS (64 kB or 128 kB). Note: the 16K RAM module from HP is not compatible
with HP85B computers.

2. The HP85B comes with 32kB of extended memory as Bank 2.
3. Start your calculation with an initial value of 3 and add 2 for each 64kB modules that you are

installing, and add 4 for each 128kB modules that you are installing. The result is the
calculated value. For example, if you plug in one 64kB module and one 128kB module, the
calculation is 3+2+4 = 9

4. The calculated value of step 3 is the value to be used for StartBank parameter. Update the
CONFIG.TXT file on the SD Card with this value, and plug the SD Card into the socket on
the Teensy processor module.

5. EBTKS can now be plugged into your HP85B.
6. If you unplug any Extended memory modules, you will have to repeat this calculation. Well,

actually, if you unplug a 128kB module, just subtract 4 from the previous calculated
StartBank. If you unplug a 64kB module, subtract 2 from the previous calculated StartBank.

7. Confirm that you have the settings correct by doing a using the DISC FREE A, B, “:D000”
command (see page 274 of the HP85B Owner’s Manual). The reported available EDisc size
is given in disk blocks. These are each 256 bytes. Take the value, and divide by 4 to get kB
of EDisc. It should be close to the expected Extended memory provided by your Extended
Memory modules and the configured size of EBTKS provided Extended Memory.

StartBank for HP86A/B, HP87/HP87XM
1. Unplug EBTKS from your system and plug in the extended memory modules you plan to

use with EBTKS (64 kB or 128 kB). Note: the 16K RAM module from HP is not compatible
with HP86/87 computers.

2. Start your HP86/87 computer and type the LIST command to see the amount of memory
available. The value should be close to a multiple of 32 kB. For example, on an HP87 that
comes with 32 kB installed, the displayed number is 28467 (on my HP87). So this is close to
32768. If I had a 128 kB module plugged in, the number would be close to 159539.

3. To calculate the closest multiple of 32 kB, divide the number provided by the LIST command
by 32768. For example: 159539 / 32768 results in 4.8687 , so the closest multiple is 5 time
32768. What we care about is the 5 that we just calculated. You can use your HP86/87
computer to do these calculations.

4. Take the result from the prior step, and add 1. In our example we get 6

(43)

Tony Serra
Typewritten text
(Cont'd)

5. The result of step 4 is the value to be used for StartBank parameter. Update the
CONFIG.TXT file on the SD Card with this value, and plug the SD Card into the socket on
the Teensy processor module.

6. EBTKS can now be plugged into your HP86/87 with the Extended memory modules.
7. If you unplug any Extended memory modules, you will have to repeat this whole procedure.

Well, actually, if you unplug a 128 kB module, just subtract 4 from the previous calculated
StartBank. If you unplug a 64 kB module, subtract 2 from the previous calculated StartBank.

8. Confirm that you have the settings correct by doing a LIST command. The reported
available memory should be greater by 32768 times NumBanks.

1 "EMC": {
2 "enable": true,
3 "NumBanks": 8,
4 "StartBank": 2
5 }

Here is an example of CONFIG.TXT
Top

If your browser window is narrow, the text below may be clipped on the right side. If this happens,
there is a scroll bar at the bottom of the page that you can adjust to see all the text

{
 "machineName": "HP85A",
 "CRTVerbose": true,
 "ram16k": true,
 "screenEmu": true,
 "CRTRemote": true,
 "tape": {
 "enable": true,
 "filepath": "/tapes/tape1.tap"
 },
 "optionRoms": {
 "directory": "/roms85/",
 "roms": [
 {
 "description": "Service ROM 340 AUXROM Aware",
 "filename": "rom340aux",
 "enable": false
 },
 {
 "description": "Assembler ROM",
 "filename": "rom050",
 "enable": false
 },
 {
 "Note": "Do not enable on HP85B as this ROM is built in on mainboard",

(44)

Tony Serra
Typewritten text
(Cont'd)

 "description": "I/O ROM",
 "filename": "rom300B",
 "enable": false
 },
 {
 "Note": "For original 85A floppies, disable rom317, rom320B, rom321B",
 "description": "Mass Storage",
 "filename": "rom320",
 "enable": false
 },
 {
 "Note 85A": "EBTKS requires this for emulated 5, 10 MB hard disk. Must also enable companion
 "Note 85B": "Do not enable on HP85B as this ROM is built-in on mainboard",

 "description": "85B Mass Storage",
 "filename": "rom320B",
 "enable": true
 },
 {
 "Note 85A": "EBTKS requires this companion to rom320B. Can be used on 85A",
 "Note 85B": "Do not enable on HP85B as this ROM is built-in on mainboard",
 "description": "EDisk",
 "filename": "rom321B",
 "enable": true
 },
 {
 "Note": "For SS/80 disk, with real HPIB and real SS/80 disk. Use with rom320B,rom321B,
 "description": "Extended Mass Storage",
 "filename": "rom317",
 "enable": false
 },
 {
 "description": "Advanced Programming",
 "filename": "rom350",
 "enable": true
 },
 {
 "description": "Printer/Plotter",
 "filename": "rom360",
 "enable": true
 },
 {
 "description": "AUXROM Primary 2021_06_25",
 "filename": "rom361",
 "enable": true
 },
 {
 "description": "AUXROM Secondary 1 2021_06_25",
 "filename": "rom362",
 "enable": true
 },
 {
 "description": "AUXROM Secondary 2 2021_06_25",
 "filename": "rom363",
 "enable": true
 },
 {
 "description": "AUXROM Secondary 3 2021_06_25",
 "filename": "rom364",

(45)

Tony Serra
Typewritten text
(Cont'd)

 "enable": true
 }
]
 },
 "hpib": {
 "select": 3,
 "devices": [
 {
 "Comment": "All blocks must have different device numbers",
 "type": 0,
 "device": 0,
 "enable": true,
 "drives": [
 {
 "Comment": "msus$ 300",
 "unit": 0,
 "filepath": "/disks/EBTKS_1.0_85.dsk",
 "writeProtect": false,
 "enable": true
 },
 {
 "Comment": "msus$ 301",
 "unit": 1,
 "filepath": "/disks/85Games1.dsk",
 "writeProtect": false,
 "enable": true
 },
 {
 "Comment": "msus$ 302",
 "unit": 2,
 "filepath": "/disks/Floppy_scr.dsk",
 "writeProtect": false,
 "enable": true
 }
]
 },
 {
 "type": 0,
 "device": 2,
 "enable": true,
 "drives": [
 {
 "Comment": "msus$ 320",
 "unit": 0,
 "filepath": "/disks/85Games2.dsk",
 "writeProtect": false,
 "enable": true
 },
 {
 "Comment": "msus$ 321",
 "unit": 1,
 "filepath": "/disks/85GamesMisc.dsk",
 "writeProtect": false,
 "enable": true
 }
]
 },
 {

(46)

Tony Serra
Typewritten text
(Cont'd)

 "Comment": "All blocks must have the same select and different device",
 "type": 4,
 "device": 3,
 "enable": true,
 "drives": [
 {
 "Comment": "msus$ 330",
 "unit": 0,
 "filepath": "/disks/5MB_scr.dsk",
 "writeProtect": false,
 "enable": true
 },
 {
 "Comment": "msus$ 331",
 "unit": 1,
 "filepath": "",
 "writeProtect": false,
 "enable": false
 }
]
 },
 {
 "Comment": "Device 10 on HPIB select code, i.e. 310",
 "printer": "",
 "device": 10,
 "enable": true,
 "filepath": "/printers/printfile.txt"
 }
]
 },
 "AutoStart": {
 "enable": false,
 "enableTapeAutostart": false,
 "Note": "Max command is 256 characters",
 "command": "\\237\\237LOAD \\042LEDTEST2\\042\\232RUN\\232",
 "batch": ""
 },
 "EMC": {
 "Comment": "Startbank add 2 for each 82908A (64 kB), add 4 for each 82909A (128 kB)
 "enable": false,
 "NumBanks": 2,
 "StartBank": 3
 }
}

(47)

Tony Serra
Typewritten text
,

Disk, Tape and SD Card
Storage
EBTKS provides emulated Disk and Tape storage.

Emulated means that there is no actual physical Disk or Disk drive, and no physical Tape or Tape
drive. Instead, EBTKS uses a combination of software and hardware on the EBTKS board to
create a storage system that from the point of view of a person writing programs on a Series80
computer, and also from the point of view of the built- in software of the Series80 computer,
standard commands that access Tapes and Disks operate as if there was one or more Disk Drives
and/or a Tape Drive. Neither the standard built-in software or user program can tell that real disk
and tape is not connected to the Series80 computer. Configuring the emulated Disk and emulated
Tape is done in the CONFIG.TXT file that is located in the root directory of the SD Card that is
plugged into EBTKS. The configuration can include disabling the facility, if for example you have a
functioning Tape Drive on an HP85A/B.

EBTKS can also co-exist with real Disk Drives, connected via an HPIB module. The only
requirement is that the HPIB module select code (default is 7) does not match the select code
used by EBTKS (default is 3). Thus, using the standard EBTKS configuration together with a real
floppy Disk Drive, the following CAT commands can access both.

Command What happens
CAT Display the catalog of “:D300”, an emulated drive on EBTKS
CAT “:D300” Display the catalog of “:D300”, an emulated drive on EBTKS
CAT “:D700” Display the catalog of the first real floppy Disk Drive
CAT “:T” Display the catalog of the emulated Tape Drive on EBTKS

EBTKS can emulate multiple disk drives concurrently, and at most, one Tape Drive.

SD Card Storage using FAT32
Separate from all of the above emulated Disk and Tape storage, EBTKS also provides its own
native hierarchical storage on the SD Card, implemented as a FAT32 file system. Unlike the
restrictive filename rules that the Series80 computers typically use, EBTKS FAT32 file names can
be any length (over 60 would be silly), and this is also true of subdirectory names. There is no
practical limit to the depth of subdirectories. The SD Card provides 16 Gigabytes of storage. The
FTA32 file is accessed with new keywords provided by the AUXROMS that are part of EBTKS.
Follow links on next page to learn more:

(48)

http://www.fliptronics.com/EBTKS/Working_with_CONFIG.TXT.html#working-with-config-txt
Tony Serra
Typewritten text
(Cont'd)

SDATTR Returns attribute status for a file or directory
SDCARDMOUNT Mount/Unmount the SD Card
SDCAT Display a catalog of the current SD Card directory
SDCD Change the current SD Card directory
SDCHAIN Like the normal CHAIN command, but for the SD Cadr
SDCLOSE Close an SD Card file
SDCOPY Copy an SD Card file to another SD Card file
SDCUR$ Returns the current SD Card directory
SDDEL Delete an SD Card file
SDEOF Test an open SD Card file for End Of File
SDEOL Set the End Of Line character sequence
SDEOL$ Return the End Of Line character sequence
SDEXISTS Test an SD Card file for existence
SDFFIRST Initializes reading a directory
SDFLUSH Flush any un-written data to an open SD Card file
SDFNEXT Iterative reading of directory entries
SDHOME$ Returns the path for the root directory
SDLOAD Load a program from the SD Card
SDLOADBIN Load a binary program from the SD Card
SDMKDIR Make a new directory on the SD Card
SDMORE Display a text file, with pagination
SDOPEN Open an SD Card file
SDPATH$ Return a piece of a path
SDRDLINE Read from an SD Card file, End Of Line aware
SDREAD Read from an SD Card file
SDREN Rename (and/or move) an SD Card file
SDRMDIR Delete a directory on the SD Card
SDSAVE Save a BASIC program to the SD Card as ASCII text
SDSEEK Position the read/write pointer for an open SD Card file
SDSIZE Returns the size of an SD Card file
SDSLASH Set the path separation character
SDSLASH$ Report the path separation character
SDSTORE Store a BASIC program as a LIF file on the SD Card
SDSTOREBIN Store a Binary program as a LIF file on the SD Card
SDWRITE Write to an SD Card file

(49)

http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#sdattr
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#sdcardmount
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#sdcat
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#sdcd
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#sdchain
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#sdclose
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#sdcopy
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#sdcur
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#sddel
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#sdeof
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#sdeol
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#index-69
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#sdexists
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#sdffirst
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#sdflush
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#sdfnext
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#sdhome
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#sdload
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#sdloadbin
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#sdmkdir
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#sdmore
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#sdopen
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#sdpath
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#sdrdline
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#sdread
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#sdren
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#sdrmdir
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#sdsave
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#sdseek
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#sdsize
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#sdslash
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#index-67
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#sdstore
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#sdstorebin
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#sdwrite
Tony Serra
Typewritten text
 - 60

Tony Serra
Typewritten text
 - 58

Tony Serra
Typewritten text
 - 67

Tony Serra
Typewritten text
 - 68

Tony Serra
Typewritten text
 - 83

Tony Serra
Typewritten text
63

Tony Serra
Typewritten text
 - 62

Tony Serra
Typewritten text
 - 69

Tony Serra
Typewritten text
 - 61

Tony Serra
Typewritten text
 - 65

Tony Serra
Typewritten text
 - 78

Tony Serra
Typewritten text
 - 79

Tony Serra
Typewritten text
 - 65

Tony Serra
Typewritten text
 - 67

Tony Serra
Typewritten text
 - 65

Tony Serra
Typewritten text
 - 68

Tony Serra
Typewritten text
 - 69

Tony Serra
Typewritten text
 - 67

Tony Serra
Typewritten text
 - 84

Tony Serra
Typewritten text
 - 69

Tony Serra
Typewritten text
 - 62

Tony Serra
Typewritten text
 - 62

Tony Serra
Typewritten text
 - 83

Tony Serra
Typewritten text
 - 64

Tony Serra
Typewritten text
 - 63

Tony Serra
Typewritten text
 - 61

Tony Serra
Typewritten text
 - 69

Tony Serra
Typewritten text
 - 70

Tony Serra
Typewritten text
 - 66

Tony Serra
Typewritten text
 - 61

Tony Serra
Typewritten text
 - 78

Tony Serra
Typewritten text
 - 78

Tony Serra
Typewritten text
 - 66

Tony Serra
Typewritten text
 - 84

Tony Serra
Typewritten text
 - 64

Disk Drive emulation
EBTKS currently emulates 1 HP 82937A HP-IB interface. There can be a number of disk devices
each with a maximum of 4 disk drives using the AMIGO protocol.

Each emulated disk drive uses a disk image file stored on the SD card.

There are no changes required on the HP85 side software wise - for all intents and purposes, the
HP85 thinks it has a ‘real’ HP-IB card and peripherals.

The select code can be set via configuration in the CONFIG.TXT file that is loaded at boot time.

The emulation is fairly simplistic and only implements the bare minimum to ‘work’. Currently status
reporting is not fully implemented. The disk image file format is identical to the one used by Everett
Kaser’s emulator - basically a sector by sector image stored in a file.

No benchmarks have been done to compare the performance relative to a ‘real’ disk drive - I would
expect it to be significantly faster - no mechanical movement is required, the burst transfers are not
throttled and there is no ‘real’ HP-IB to speak of. Many operations appear instantaneous.

There is plenty of scope for improvement - the first would be to complete the AMIGO emulation to
give proper status reporting. Then SS/80 might be the next step.

Currently we’ve been using the mini-floppy (82901/9121) as most of the available disk images are
for this format, and 5 MB hard disks (emulated winchester disk drives). EBTKS also supports (but
not yet tested) emulation of 8” floppy disks.

For those that want to delve into the code:

HPDisk.h has the class that implements a single disk drive. The mapping of tracks/sectors for the
disk drive types is done here.

HPIBDisk.h has the class that implements a disk drive device. It has a collection of HPDisk objects
(up to 4 - HP s/w limitation) and forms the virtual HPIB device. The AMIGO protocol is
implemented here.

EBTKS_1MB5.cpp is where the virtual hardware HPIB interface is implemented. The 1MB5
translator chip and the Intel i8049 processor (the HP custom chip and microprocessor used in the
real interface) are emulated - but not completely. Only the bare minimum is done - the goal was a
functional implementation rather than a cycle and function perfect emulation. Up to 31 instances of
the HPIBDisk class are supported.

(50)

 EBTKS_1MB5
 |
 +-----------------------+--------------------+
 | |
 HPIBDisk0 HPIBDisk1
 | |
 +---------+----+----+---------+ +---------+----+----+---------+
 | | | | | | | |
HPDisk0 HPDisk1 HPDisk2 HPDisk3 HPDisk0 HPDisk1 HPDisk2 HPDisk3

The code has functions that emulate the 1MB5 hardware registers that are called via the bus
Interrupt Service Routine (ISR). The emulation is split between the real-time functions (responding
to ISR events) and the non-realtime processing (which represents the bulk of the work) and is
processed in the main background processing loop. Due to this, the interface is rather complex
due to the operation of the 1MB5 - there’s interrupts, acknowledges, burst transfers and timing
sensitivities. Tread carefully if you want to modify this! As well, the code cannot block as there are
other tasks in the background loop that may need attention.

If you’re feeling adventurous and like a challenge - there’s always the possibility of writing a new
ROM to implement the filesystem directly on the SD card and avoid the HPIB/AMIGO stuff.

The emulation does not create blank disks. Instead we copy a reference file that has the required
initialization to achieve this, using the MOUNT command.

Tape drive emulation
Like the disk drives, the tape is a functional emulation. i.e. it doesn’t attempt to precisely mimic a
real tape. It does enough to keep the HP85 code happy to think it has a tape unit. The tape
emulation file format is identical to Everett Kaser’s HP emulator. This mimics the real tape as an
array of bytes with flags to emulate the tape drive motor tachometer slots. Due to this the file is
800k or so bytes for a 120 KB tape. On the other hand, we have 16 GB of storage on the SD Card.

Due to the emulation method, the emulation is faster than the real one, but we still have to traverse
the virtual tape so it is not much faster. Like the real tape drive, the CRT is blanked while the virtual
motor is moving the virtual tape past the virtual read/write head. We do not implement a virtual
failed capstan rubber roller, or a virtual failed tape cartridge drive band.

The emulation uses a windowing method where a block of tape data is loaded into and out of
memory from the SD card file. As the tape is traversed, the required block is loaded. This is done
to preserve the amount of ram required for the tape emulation.

The emulation does not create blank tapes. Instead we copy a reference file that has the required
initialization to achieve this, using the MOUNT command.

The basic hierarchy:

(51)

Tony Serra
Typewritten text
(Cont'd)

No write protection is implemented. The emulation hasn’t been exhaustively tested - especially
with the corner cases like a full tape and extensive file operations.

We don’t expect much interest in the tape - once you have disk functionality, the tape becomes a
historical curiosity. Which is kind of sad, given that tape emulation was the original purpose of
EBTKS.

The code for the tape emulation is in the file EBTKS_Tape_Drive.cpp

The CRT blanking during Tape operations is built into the HP85 system ROM code. HP did this to
reduce the load on the power supply.

(52)

16 KB RAM for the HP-85A
EBTKS can be configured in the CONFIG.TXT file to provide 16 KB of RAM in the upper part of
a HP85A computer (and probably also HP83).

This capability should not be enabled in HP85B, or HP86/87 as they already implement this
memory area.

(53)

AUXROM Keywords
AUXERRN AUXROM Error number when Error 109 is reported
AUXREV Returns the AUX ROMs revision number
BOOT Restarts EBTKS and the Series80 Computer
CRTCOLS Returns # of columns on CRT display
CRTCURSCOL Returns cursor column number
CRTCURSOR Sets cursor to REPLACE/INSERT
CRTCURSROW Returns absolute cursor row number
CRTGETTOP Returns the row# of top of the CRT display
CRTON Blanks/Unblanks CRT
CRTREAD$ Reads from CRT
CRTROWS Returns # of rows on CRT display
CRTSETTOP Sets CRT start row
CRTWRITE Writes to CRT
DATETIME Read the Real Time Clock
EBTKSREV$ Returns a string with EBTKS firmware build date and time
HELP Built-in HELP (in development)
KBDBUFFER Takes over keyboard
KBDISKEY Test if keys in buffer
KBDKEY Returns the next keycode from the keyboard buffer
LISTROMS List all ROMs or just active ROMs
MEDIA$ Returns the name of a LIF image
MOUNT Mount a LIF image on a msus$
PEEK Read a byte from memory or I/O space
POKE Write a byte to memory or I/O space
RPEEK Read a byte from a bank switched ROM
RPOKE Write a byte to a bank switched ROM (dangerous)
RSECTOR Reads a raw 256-byte sector
SDATTR Returns attribute status for a file or directory
SDBATCH Start reading keyboard input from a batch file
SDCAT Display a catalog of the current SD Card directory
SDCD Change the current SD Card directory
SDCHAIN Like the normal CHAIN command, but for the SD Card
SDCLOSE Close an SD Card file
SDCOPY Copy an SD Card file to another SD Card file
SDCUR$ Returns the current SD Card directory
SDDEL Delete an SD Card file
SDEOF Test an open SD Card file for End Of File
SDEOL Set the End Of Line character sequence
SDEOL$ Return the End Of Line character sequence

(54)

Tony Serra
Typewritten text
(Cont'd)

Tony Serra
Typewritten text
 - 71

Tony Serra
Typewritten text
 - 79

Tony Serra
Typewritten text
 - 81

Tony Serra
Typewritten text
 - 77

Tony Serra
Typewritten text
 - 77

Tony Serra
Typewritten text
 - 77

Tony Serra
Typewritten text
 - 78

Tony Serra
Typewritten text
 - 76

Tony Serra
Typewritten text
 - 77

Tony Serra
Typewritten text
 - 76

Tony Serra
Typewritten text
 - 77

Tony Serra
Typewritten text
 - 76

Tony Serra
Typewritten text
 - 76

Tony Serra
Typewritten text
 - 71

Tony Serra
Typewritten text
 - 79

Tony Serra
Typewritten text
 - 75

Tony Serra
Typewritten text
 - 75

Tony Serra
Typewritten text
 - 75

Tony Serra
Typewritten text
 - 73

Tony Serra
Typewritten text
 - 60

Tony Serra
Typewritten text
 - 58

Tony Serra
Typewritten text
 - 74

Tony Serra
Typewritten text
 - 74

Tony Serra
Typewritten text
 - 74

Tony Serra
Typewritten text
 - 74

Tony Serra
Typewritten text
 - 60

Tony Serra
Typewritten text
 - 84

Tony Serra
Typewritten text
 - 67

Tony Serra
Typewritten text
 - 68

Tony Serra
Typewritten text
 - 83

Tony Serra
Typewritten text
 - 63

Tony Serra
Typewritten text
 - 62

Tony Serra
Typewritten text
 - 69

Tony Serra
Typewritten text
 - 65

Tony Serra
Typewritten text
 - 78

Tony Serra
Typewritten text
 - 79

Tony Serra
Typewritten text
 - 75

Tony Serra
Typewritten text
 - 81

Tony Serra
Typewritten text
 - 61

SDEXISTS Test an SD Card file for existence
SDEXPORTLIF Exports a file from a LIF disk to an SD Card file
SDFFIRST Initializes reading a directory
SDFLUSH Flush any un-written data to an open SD Card file
SDFNEXT Iterative reading of directory entries
SDGET Read a BASIC source file from the SD Card
SDHOME$ Returns the path for the root directory
SDIMPORTLIF Imports a LIF file from the SD Card and write it to a LIF disk
SDLOAD Load a program from the SD Card
SDLOADBIN Load a binary program from the SD Card
SDMKDIR Make a new directory on the SD Card
SDMORE Display a text file, with pagination
SDOPEN Open an SD Card file
SDPATH$ Return a piece of a path
SDRDLINE Read from an SD Card file, End Of Line aware
SDREAD Read from an SD Card file
SDREN Rename (and/or move) an SD Card file
SDRMDIR Delete a directory on the SD Card
SDSAVE Save a BASIC program to the SD Card as ASCII text
SDSEEK Position the read/write pointer for an open SD Card file
SDSIZE Returns the size of an SD Card file
SDSLASH Set the path separation character
SDSLASH$ Report the path separation character
SDSTORE Store a BASIC program as a LIF file on the SD Card
SDSTOREBIN Store a Binary program as a LIF file on the SD Card
SDWRITE Write to an SD Card file
SETLED Set the color and intensity of the two RGB LEDs
SPRINTF Complete control of formatted output, using C sprintf()
UNMOUNT Unmount the LIF image from a msus$
WSECTOR Writes a raw 256-byte sector
AUXBUF$ Low Level AUXROM Interface for developers
AUXCMD Low Level AUXROM Interface for developers
AUXOPT$ Low Level AUXROM Interface for developers

AUXROM
AUXROM is a set of 8KB ROM images that are the companion firmware for the HP Series 80 computers when
the EBTKS board is installed. The primary author of AUXROM is Everett Kaser, and the companion software on
EBTKS that AUXROM communicates with was authored by Philip. This page documents the functions that
AUXROM implements and also covers the internal architecture of how AUXROMs and EBTKS communicate

(55)

Tony Serra
Typewritten text
(Cont'd)

Tony Serra
Typewritten text
 - 65

Tony Serra
Typewritten text
 - 81

Tony Serra
Typewritten text
 - 67

Tony Serra
Typewritten text
 - 65

Tony Serra
Typewritten text
 - 68

Tony Serra
Typewritten text
 - 70

Tony Serra
Typewritten text
 - 69

Tony Serra
Typewritten text
 - 82

Tony Serra
Typewritten text
 - 67

Tony Serra
Typewritten text
 - 84

Tony Serra
Typewritten text
 - 69

Tony Serra
Typewritten text
 - 62

Tony Serra
Typewritten text
 - 62

Tony Serra
Typewritten text
 - 83

Tony Serra
Typewritten text
 - 64

Tony Serra
Typewritten text
 - 63

Tony Serra
Typewritten text
 - 61

Tony Serra
Typewritten text
 - 69

Tony Serra
Typewritten text
 - 70

Tony Serra
Typewritten text
 - 66

Tony Serra
Typewritten text
 - 61

Tony Serra
Typewritten text
 - 78

Tony Serra
Typewritten text
 - 78

Tony Serra
Typewritten text
66

Tony Serra
Typewritten text
 - 84

Tony Serra
Typewritten text
 - 64

Tony Serra
Typewritten text
 - 80

Tony Serra
Typewritten text
 - 72

Tony Serra
Typewritten text
 - 59

Tony Serra
Typewritten text
 - 81

Tony Serra
Typewritten text
 - 87

Tony Serra
Typewritten text
 - 86

Tony Serra
Typewritten text
 - 86

The AUXROM(s) like all other optional ROMS on the HP-85 execute in an address space window from 060000 to
077777 (octal). This is 8K bytes. At any time only one option ROM can be active, and the ROM is selected by an
I/O register named RSELEC. In almost every other respect, the AUXROM is different than any ROM for the HP-
85. Some of these differences will be seen by the user, and some just make what happens behind the curtain
easier to implement, or allow much faster operation. See Memory Map for more details

Compatibility with Everett’s Series 80 Emulator
Many of these features are available in Everett Kaser’s Series 80 Emulator, as well as in a real HP-85 with an
EBTKS. Some functionality may be slightly different between the two environments, due to differences in the
environments.

BEWARE: With great power comes great responsibility. You could very easily (were you a person liable to
moments of criminal carelessness) delete entire LIF volumes, your configuration file, or your entire hard disk (if
you’re running this in the Emulator). Be wary.

AUXROM Function Overview
AUXROM is identified as ROM 361 (octal), but it may also claim adjacent ROM numbers up to 376 (octal), but
these additional IDs do not get detected when the HP-85 starts up, and they do not add any new function names
or keywords.

The AUXROM has many functions for accessing and manipulating files stored on the 16 GB SD card’s FAT32 file
system. Most of these new Keywords can be included in your programs. They provide the ability to directly use
the FAT32 file system, including reading, writing, creating, and deleting both files and directories.

File names can be as long as you want (within reason), and you can have nested directories, with long sub-
directory names.

The FAT32 file access functions are a reasonable subset of the Posix file manipulation functions.

For most of the SDxxxx keywords that involve a filename or path, the system (EBTKS or Emulator) keeps track
of the “current path,” much as MS-DOS or a Windows command line or a unix shell keeps track of a current
working directory. The filenames or paths specified in these SDxxxx keywords (functions and statements) may be
ABSOLUTE paths (ones starting with a ‘/’ or \’\\’), or they may be RELATIVE (NOT starting with a slash).
RELATIVE paths will automatically be appended, internally, to the “current path” to make them an ABSOLUTE
path. By default, the path separator is ‘/’

Unquoted file paths and file names

In some SDxxxx statements, the filename can be specified either quoted or unquoted. You can’t use unquoted if
the filename contains a SPACE, @, $, COMMA, or EXCLAMATION POINT character. If it contains one of those,
then you’ll have to ” ” the filename to avoid confusing the parser. The SDxxxx statements that will accept either a
quoted or unquoted string are:

SDMKDIR
SDRMDIR

(56)

http://www.fliptronics.com/EBTKS/EBTKS_Memory_Map.html#ebtks-memory-map-for-the-auxrom-s
Tony Serra
Typewritten text
(Cont'd)

SDDEL
SDCD
UNMOUNT
SDSAVE
SDGET
SDMORE
SDLOAD
SDSTORE

These statements all have one string argument, with no options for other arguments that could confuse the
parser. Other SDxxxx statements that have more than a single string argument MUST use quoted strings.

AUXROM Error messages
In all of the following documentation, error status is returned in the following ways.

Standard error messages are from the system ROMs and have values from 1 to 92 and are listed in Apendix E
of the HP85A Owner’s manual and Programming Guide (page 307). The HP85B manual has the same
information (page 381), and the HP86/87 manual has the same information (page 343). EBTKS uses these error
numbers where appropriate, and the error numbers are returned in ERRN.

Standard EBTKS error messages are from 108 (a warning) through to 128 (currently). These error numbers
are fairly general and are shared across many EBTKS Keywords. The error numbers are returned in ERRN.

Custom EBTKS error messages use the Standard EBTKS error messages 109 as a starting point, then add an
error message that is specific to the keyword. These error messages display as follows:

Error 109 : Custom text message

For these error messages, as well as ERRN being set to 109, an additional variable AUXERRN is set to a
number that is specific to the custom error message. These start at 300. For each keyword on the rest of this
page, when an error messages is shown with custom text and an AUXERRN value, it is reported as per the
above example, with ERRN set to 109 and AUXERRN set to the listed value.

Loading and Unloading emulated LIF disk
and tape images
Throughout this page, the references to msus$ is the same as the traditional Series 80 usage. See the HP
Series 80 documentation for details of legal msus$ strings.

For MOUNT and UNMOUNT, the “msus$” may refer to EITHER an emulated disk drive (:Dxxx) OR the emulated
TAPE drive (:T). The MEDIA for an emulated disk drive is an SD file that emulates the contents of a disk,
whereas the MEDIA for the emulated tape drive is an SD file that emulates the contents of a tape. These are
NOT interchangeable: a MEDIA created for one device (disk or tape) cannot be loaded into the other emulated
device. If the MEDIA gets created, it will be the proper length (containing the proper amount of physical

(57)

Tony Serra
Typewritten text
(Cont'd)

‘records’), and it will be ‘initialized’. There is no need to INITIALIZE a new disk image or ERASETAPE for a new
tape image.

NOTE: With Everett Kaser’s HP8X Emulator, all disk images must exist in one of
the DISKS0 to DISKS9 sub-folders. For the emulator, Disk images need to be INITIALIZE-ed and Tape
images need to be ERASETAPE-ed.

There is also a special mode to Mount/Unmount the SD Card.

MOUNT msus$, filePath$ [, modeFlag]
Top

Associate the specified LIF image file with msus$

msus$ specifies the emulated disk/tape drive that will be associated with the LIF image
filePath$ is the name (maybe with path) of the emulated MEDIA (LIF image). Typically disk LIF images are
in the /disks/ directory, and tape images are in the /tapes/ directory.
modeFlag controls what happens if emulated MEDIA exists or not

0 = error if doesn’t exist, else MOUNT (this is the default if not specified)
1 = if exists, MOUNT, else create blank and MOUNT
2 = if exists, error, else create blank and MOUNT

There is a special case of the msus$ parameter being “SDCARD” to mount the SDCard, see below.

Possible Errors

“Can’t resolve path” , AUXERRN will be 330
“Invalid MOUNT mode” , AUXERRN will be 410
“MOUNT file does not exist” , AUXERRN will be 411
“MOUNT MSU$ error” , AUXERRN will be 412
“MOUNT Filename must end in .tap” , AUXERRN will be 413
“MOUNT HPIB Select must match” , AUXERRN will be 414
“MOUNT failed” , AUXERRN will be 415
“MOUNT Filename must end in .dsk” , AUXERRN will be 416
“Couldn’t open Ref Disk” , AUXERRN will be 417
“Couldn’t open New Disk” , AUXERRN will be 418
“Couldn’t init New Disk” , AUXERRN will be 419
“While MOUNTing an SD card, failed”, AUXERRN will be 406
“Mounting virtual drives failed”, AUXERRN will be 407
“Couldn’t read Ref Disk” , AUXERRN will be 408
“MOUNT File already exists” , AUXERRN will be 409
“Couldn’t open Ref Tape” , AUXERRN will be 426
“Couldn’t open New Tape” , AUXERRN will be 427
“Couldn’t init New Tape” , AUXERRN will be 428
“Device code not supported”, AUXERRN will be 512

Examples

MOUNT “:D300”, “/disks/85AssemblerROMdisc.dsk”

(58)

Tony Serra
Typewritten text
(Cont'd)

Uses 0 as the default modeFlag.

MOUNT “:D300”, “/disks/NewDisk.dsk”, 2
Errors if NewDisk already exists, otherwise creates and MOUNTs it.

MOUNT “:T”, “/tapes/DataTape.tap”, 1
If “DataTape” exists, MOUNT it, otherwise create a blank SD file called “DataTape” and mount it.

UNMOUNT msus$
Top

msus$ specifies the emulated disk or tape drive from which to remove the current ‘emulated’ MEDIA file.
There is a special case of the msus$ parameter being “SDCARD” to unmount the SDCard, see below.

This Keyword supports unquoted names (but still needs the :D or equivalent)

Possible Errors

“UNMOUNT MSU$ error” , AUXERRN will be 490
“UNMOUNT Disk error” , AUXERRN will be 491

Examples

10 UNMOUNT “:D300”
20 UNMOUNT “:T”

Mounting and Unmounting the SD Card
Top

MOUNT and UNMOUNT also support an msus$ of “SDCard” (not case sensitive) that allows removing and
installing the SD Card without having to turn the power to the HP85 off and back on. For the MOUNT keyword, it
requires a second parameter, which for this usage, can be any string or string variable, since the value is
ignored.

UNMOUNT “sdcard”

will close all the LIF files for each of the current emulated disk and tape drives. After this keyword is run, it is safe
to unplug the SD Card.

MOUNT “SDCard”, “A”

This keyword should be run after the SD Card is plugged back into the EBTKS. The CONFIG.TXT file is read,
and unlike system boot where all the sections of the file are used (setting options, loading ROMs, setting up
virtual disks, etc…), re-mounting the SD Card and running the above line, will only process the disk and tape
specifications, re-associating the relevant LIF files with their respective msus$. The second parameter is needed
to meet the requirements of the Mount keyword, but in this case it isn’t used. Any non-empty string will do.

(59)

MEDIA$(msus$)
Top

Report the filename of the LIF image associated with the msus$

msus$ specifies the emulated disk or tape drive for which the currently ‘emulated’ MEDIA file’s name
should be returned.

Return Value

Returns a string that is the full path to the LIF image

Possible Errors

“MEDIA$ MSU$ error” , AUXERRN will be 510
“MEDIA$ HPIB Select must match” , AUXERRN will be 511
“Device code not supported” , AUXERRN will be 512

Examples

A$ = MEDIA$(“:T”)
A$ = MEDIA$(“:D301”)

SD Card File Manipulation

SDATTR(filePathName$)
Top

Returns a value that encodes the Attributes of a file or a directory. There are only two types of attributes:

Whether the object is a file or a directory, encoded in bit 0
Whether the object is normal access, or it is read-only, encoded in bit 1

The two independent attributes are combined into a single returned integer in the range 0 to 3

Return Value

Bit 1 Bit 0 Return Value Meaning
0 0 0 filePathName$ is a normal read/write access file
0 1 1 filePathName$ is a normal directory
1 0 2 filePathName$ is a file with read-only access
1 1 3 filePathName$ is a directory with read-only access

Possible Errors

“SD Error” ERRN will be 113. Bad file/pathname or includes wild cards or file/path name not found

Examples Example: A = SDATTR(“ZINK”) (60)

Tony Serra
Typewritten text
•

SDSIZE(filePathName$)
Top

Return Value

Returns the size of the specified SD file.

Possible Errors

“SD Error” ERRN will be 113. Bad file/pathname or includes wild cards or file/path name not found

SDDEL fileSpec$
Top

Deletes the specified SD file (does not work on sub-directories, yet).
Wild cards (* and ?) may be used in the filename part of fileSpec$, but not in the path part.

This Keyword supports unquoted names

Possible Errors

“Can’t resolve path” , AUXERRN will be 330
“SDDEL no file specified” , AUXERRN will be 370
“Couldn’t delete file” , AUXERRN will be 371
“SDDEL no wildcards in path” , AUXERRN will be 372
“SDDEL problem with path” , AUXERRN will be 373

SDREN oldName$, newName$
Top

Renames the specified file or directory to the new name. Can be used to move files between directories

Possible Errors

“Can’t resolve Old path” , AUXERRN will be 450
“Can’t resolve New path” , AUXERRN will be 451
“SDREN rename failed” , AUXERRN will be 452
“SDREN Mystery bug” , AUXERRN will be 453
“SDREN Old file doesn’t exist” , AUXERRN will be 454

(61)

Copies the specified Source file to the specified Destination file. If the Overwrite option is not given, or it is 0,
then overwriting an existing file is an error. If the Overwrite option is provided and is 1, then an existing file will be
overwritten/replaced.
Does not support wild cards, yet.
Does not support copying a complete directory, yet.
SourceName$ and DestinationName$ must be string variables or quoted strings.

Possible Errors

“Can’t resolve Source path” , AUXERRN will be 520
“Can’t resolve Destination path” , AUXERRN will be 521
“SDCOPY bug in code” , AUXERRN will be 522
“Source file doesn’t exist” , AUXERRN will be 523
“Couldn’t open Source File” , AUXERRN will be 524
“Couldn’t open Destination File” , AUXERRN will be 525
“File copy failed” , AUXERRN will be 526
“SDCOPY File already Exists” , AUXERRN will be 527

SDMORE SourceName$ [, Paginate]
Top

Displays (types) the SD file to the CRT, optionally ‘paginating’ it (ala the unix MORE command) if ‘paging’ is 1. If
‘paging’ is not specified, then the default is 0 (no paging). This dumps the file to the CRT as fast as it can, and it
is NOT redirectable by using the CRT IS statement, it will still go to the CRT. When paging and paused at a page
boundary, the RUN key will dump the rest of the file with no further paging/pausing, while -LINE, BACKSPACE, -
CHAR, and PAUSE will quit the SDMORE immediately.

This Keyword supports unquoted names

Possible Errors

“Open failed Mode 0” , AUXERRN will be 422
“Invalid Mode” , ERRN will be 114 , Paginate should be 0 or 1

SD Card File Access

SDOPEN filePathName$, mode#, file#
Top

Opens a file on the SD card for read/write access. Three different modes support opening existing files for
reading-only, or for reading & writing, or for creating or truncating the file. The file is always opened in ‘binary’
mode, no ‘text’ mode is supported, except via the SDRDLINE statement.

SDCOPY SourceName$, DestinationName$ [, Overwrite]

(62)

Tony Serra
Typewritten text
(Cont'd)

filePathName$ may be an absolute path to the file or a path relative to the current folder (returned via
SDCUR$ and set via SDCD).
mode#

0 = Error if doesn’t exist, else open for READ-ONLY set to START of file.
1 = Open if exists, create if doesn’t, set position to END of file.
2 = Truncate if exists, create if doesn’t, set position to START of file.

file#:
A number from 1 to 10. SD file access supports having up to 10 files open at the same time, and each
one gets assigned to a file# from 1 to 10. These numbers are different and not related to the Basic
ASSIGN buffer numbers, although they serve the same general purpose, just for the SD file system
rather than for the Series 80 tape and disk file system.

Possible Errors

“File is already open” , AUXERRN will be 420
“Parsing problems with path” , AUXERRN will be 421
“Open failed Mode 0” , AUXERRN will be 422
“Open failed Mode 1” , AUXERRN will be 423
“Open failed Mode 2” , AUXERRN will be 424
“Open failedIllegal Mode” , AUXERRN will be 425
“Couldn’t open Ref Tape” , AUXERRN will be 426
“Couldn’t open New Tape” , AUXERRN will be 427
“Couldn’t init New Tape” , AUXERRN will be 428

SDCLOSE file#
Top

Closes a previously opened file.

file# is a file number from 1 to 10 that was used to open the file.
file# is 0 to close all open files

Possible Errors

SD ERROR (213D) if file# was not open ##### needs to be fixed once Auxroms fixed #####

Examples

10 SDCLOSE 0
20 B = 4 @ SDCLOSE B

SDREAD dst$Var, bytesReadVar, maxBytes, file#
Top

Reads some number of bytes from the already opened SD file, placing the bytes into the destination string
variable and the number of bytes read into the bytesReadVar. The number of bytes read will be either maxBytes

(63)

Tony Serra
Typewritten text
(Cont'd)

or the remaining number of bytes in the file, whichever is smaller.

dst$Var Where the data that is read is stored
bytesReadVar Variable that is set to the actual number of bytes read
maxBytes Requested number of bytes to read
file# File Number

Possible Errors

“SDREAD File not open” , AUXERRN will be 440

Example

DIM A$[500]
SDOPEN "ZINK", 0, 5
SDREAD A$, L, 500, 5

SDRDLINE dst$Var, bytesReadVar, maxBytes, file#
Top

Reads bytes from the file into dst$Var until one of the following occurs:

maxBytes have been read (Note: can’t be greater than 1500)
the end-of-file is reached
an EOL-sequence (CR/LF or LF or CR) is seen

Sets bytesReadVar to the number of bytes stored into dst$Var. The EOL-sequence is NOT stored in dst$Var.
Returns -1 if at end of file.

Possible Errors

SD ERROR (213D) if file# not open, or general SEEK or READ error.

Example

DIM A$[256]
SDOPEN "ZINK", 0, 5
SDRDLINE A$, L, 256, 5

SDWRITE src$, file#
Top

Writes a string to a previously opened SD file. This is a binary mode file operation, no EOL-sequence is
automatically written. If you are writing text and wish an EOL-sequence, use SPRINTF and SDEOL$ to format
the output string with an EOL-sequence on the end before writing the formatted string to the file.

Possible Errors

“SDWRITE File not open for write” , AUXERRN will be 480
(64)

Tony Serra
Typewritten text
(Cont'd)

Example

DIM F$[600]
N "ZINK",2,5
TF F$, "Hello, world!%s", SDEOL$

SDWRITE F$, 5

SDEOF(file#)
Top

A numeric function that tells you how many bytes from the current “file position pointer” to the “end of the file”

Return Value

Returns 0 if the current file# position is at the end-of-the-file
Returns a positive number if there are bytes from the current file position to the end of the file.

Possible Errors

SD ERROR (213D) if file# is not open or a general SEEK error occurs.

Example

(This needs to be checked)
10 DIM A$[200]
20 SDOPEN "ZINK",0,5
30 SDRDLINE A$, L, 200, 5
40 DISP A$
50 IF SDEOF(5) THEN 30
60 SDCLOSE 5
70 END

SDEXISTS(filePathName$)
Top

Return Value

Returns 0 if the specified file or sub-dir does not exist, otherwise returns 1.

Possible Errors

none

SDFLUSH file#
Forces any pending (buffered) writes to be flushed to storage. This has no effect when running on the Series 80
Emulator, but when running on the EBTKS, it causes buffers to be written to the SD card. If the file# is 0, then all
open files are flushed.

Possible Errors (65)

Tony Serra
Typewritten text
•none

SDSEEK(mode#, offset#, file#)
Top

Moves the “current position” pointer in a file to a specified location. The new location can be specified in one of
three relative offsets as specified by the mode#:

Return Value

MODE 0: seek to absolute >=0 offset from start of file
MODE 1: seek to +/- relative position from current point in file
MODE 2: seek to absolute <=0 offset from end of file

Return Value

New file position

Possible Errors

“Seek on file that isn’t open” , AUXERRN will be 470
“Trying to seek before beginning” , AUXERRN will be 471
“Trying to seek past EOF” , AUXERRN will be 472
“SDSEEK failed somehow” , AUXERRN will be 473

SDSTORE nameSD$
Top

Stores the Basic program currently in memory to an SD file in tokenized form. A “LIF header” is included on the
front of the file. This is essentially a shortcut way of doing STORE “filename” and then SDEXPORTLIF
“filename”,”SDname”.

This Keyword supports unquoted names

Possible Errors

FILE/PATH (217D) error in file/path name, or error opening/creating the file
SD ERROR (213D) if write failed to write everything

Top

(66)

Loads a Basic program into memory from an SD file that was SDSTORE’d.

This Keyword supports unquoted names

Possible Errors

FILE/PATH (217D) error in file/path name, or error opening/creating the file

Directory Manipulation
SDCAT [fileSpec$]
Top

Displays a catalog of the SD file system. If no fileSpec$ is provided, “*” is used. fileSpec$ is a string expression
which may or may not include wild card characters (‘*’ and ‘?’). As much of the file name as possible will be
shown on the left of the screen and the filesize on the right. If the file name gets truncated because it’s too long
to display, the last character that is shown will be underlined. If the file is READONLY, the size value will be
underlined. If it’s a sub-directory, a ‘/’ is shown for the size, and if it’s a READ-ONLY sub-directory the ‘/’ will be
underlined.

SDCAT
SDCAT fileSpec$

Possible Errors

“Can’t resolve path” , AUXERRN will be 330
“Can’t list directory” , AUXERRN will be 331
“SDCAT no wildcards in path” , AUXERRN will be 333

SDFFIRST name$, date$, size, attrib, fileSpec$
Top

This keyword initializes an iterative process that delivers catalog lines 1 per call. This command delivers the first
catalog line that matches the fileSpec$, and the next command (SDFNEXT) is use to deliver the remainder by
repetitive calls. The fileSpec$ is only needed for this keyword. It is remembered for the subsequent SDFNEXT
calls. There can only be one active iterative catalog process. If another SDFFIRST occurs before the calls to
SDFNEXT have exhausted the current catalog, a new iterative process is started.

SDFFIRST name$, date$, size, attrib, fileSpec$

Return Values

name$ The first catalog entry that matches fileSpec$
 An empty string if no catalog entries matches the fileSpec$
date$ The associated date and time

SDLOAD nameSD$

size The file size (0 if a directory)
attrib The file attributes

See this for a description of attributes (67)

Tony Serra
Typewritten text
(Cont'd)

Possible Errors (due to implementation details, the possible error messages are shared with SDCAT)

“Can’t resolve path” , AUXERRN will be 330
“Can’t list directory” , AUXERRN will be 331
“No SDCAT init or past end” , AUXERRN will be 332
“SDCAT no wildcards in path” , AUXERRN will be 333

SDFNEXT name$, date$, size, attrib
Top

This keyword must be preceded by a call to SDFFIRST to set up the fileSpec$ (that may include wild cards).

The return values are the same as SDFFIRST. Successive calls to this keyword will return successive catalog
entries until all have been returned. After the last entry has been returned, the next call will return a name$ that is
a string of length 0. This concludes the iterative retrieval of catalog entries. If you make an additional call to
SDFNEXT after it has indicated that there are no more entries (length 0 for name$), then an error is reported.

Possible Errors (due to implementation details, the possible error messages are shared with SDCAT)

“Can’t resolve path” , AUXERRN will be 330
“Can’t list directory” , AUXERRN will be 331
“No SDCAT init or past end” , AUXERRN will be 332
“SDCAT no wildcards in path” , AUXERRN will be 333

SDCD pathDir$
Top

Changes the “current SD directory” to pathDir$. pathDir$ may be a relative path (relative to the CURRENT
“current directory,” or it may be absolute (starting with a SLASH).

This Keyword supports unquoted directory paths

Possible Errors

“Can’t resolve path” , AUXERRN will be 330
“Unable to open directory” , AUXERRN will be 340
“Target path is not a directory” , AUXERRN will be 341
“Couldn’t change directory” , AUXERRN will be 342

(68)

 Value

Returns a string containing the current full (absolute) SD path.

Possible Errors

none

SDHOME$
Top

Return Value

Returns a string containing the original starting full (absolute) SD path, the “home” directory. This NEVER
changes during any given “power/run cycle.” This is always “/” on EBTKS, but is a path on the Everett
Kaser Series 80 Emulator

Possible Errors

none

SDMKDIR folderName$
Top

Creates a sub-directory on the SD drive. If multiple sub-directories are included in “folderName$,” all of the sub-
directories except for the last one must already exist. In other words, you can only create ONE LEVEL of sub-
directory at a time.

This Keyword supports unquoted names

Possible Errors

FILE/PATH (217D) if too long or invalid
SD ERROR (213D) if failed
“SDMKDIR Dir already exists” , AUXERRN will be 400 (maybe some other error)

SDRMDIR folderName$
Top

Removes a sub-directory from the SD drive. The sub-directory MUST be empty, or the SDRMDIR will fail.

This Keyword supports unquoted sub-directories

Possible Errors

CUR$

FILE/PATH (217D) if too long or invalid
SD ERROR (213D) if failed (69)

Tony Serra
Typewritten text
•

Tony Serra
Typewritten text
•

Tony Serra
Typewritten text
SD

Tony Serra
Typewritten text
Return

Export/Import Of Series 80 Files

SDSAVE filePath$
Top

Saves the currently loaded program to an ASCII SD file (essentially, it lists the program to the file, appending the
current SDEOL sequence to the end of each line. This is a non-programmable command.

This Keyword supports unquoted names

Possible Errors

FILE/PATH (217D) error in file/path name, or error opening/creating the file various system listing errors,
primarily ROM MISSING

SDGET filePath$
Top

Reads a file (usually a file that was created with an SDSAVE command), and parses the lines, attempting to
recreate the original program from the ASCII listing of it. This is a non-programmable command.

This Keyword supports unquoted names

Possible Errors

FILE/PATH (217D) error in file/path name, or error opening the file
BUSY (221D) text buffering is already in use (only one at a time)
Various system parsing errors (could be almost anything if the file was hand edited)

NOTE 1:
SDGET does not do a SCRATCH, so the SDGET’d lines will be edited into the currently in-memory program.
If you want a clean slate, do a SCRATCH first yourself.

NOTE 2:
Although SDGET will read in lines > 96 characters in length and parse them, keep in mind that when you list
those lines on the screen, you won’t be able to edit them on the screen (unless you can remove enough
spaces to shrink the line down to what will fit on three lines of the display). Also, the maximum line length
that SDGET will read in is 255 characters (which, of course, is WILDLY too long).

NOTE 3:
If you do an SDGET of assembly language code while in ASSEMBLER mode, you will see the lines echoed
on the displayed, likely “inching their way” up the screen when lines with comments are encountered. So it
goes.

(70)

GENERAL FEATURES

DATETIME Year, Month, Day, Seconds
Top

Returns four numeric values from the Real Time Clock (RTC).

Seconds is the number of seconds since midnight. Range is 0 to 86399
Day is the day of the month. Range is 1 to 31
Month is the month of the year. Range is 1 to 12
Year is the current year. Range is 1970 to 2038

For example

DATETIME A,B,C,D
DISP "Year";A
DISP "Month";B
DISP "Day";C
DISP "Hours";INT(D/3600)
DISP "Minutes";INT(FP(D/3600)*60)
DISP "Seconds";D-INT(D/3600)*3600-INT(FP(D/3600)*60)*60

Possible Errors

none

AUXERRN
Top

The AUXROM supports the ability for EBTKS to create custom error messages that are not in the original ROM.
These custom error messages always have an error number of 109. To make it easier to distinguish errors (in a
program), if you have an ON ERROR statement active, then the handler routine for the ON ERROR can check
the error number for 109, and if so, check ERROM for 241 (the decimal# of the AUX ROM), and if so, it can then
use AUXERRN to get a unique value that is set by the EBTKS error code, allowing you to easily differentiate
between differentiate (programmatically) ‘custom’ error messages.

Possible Errors

none

Top

(71)

A reasonable facsimile of the C language/library sprintf() function. ‘dst$Var’ is the string into which the formatting
output will be stored. ‘format$’ is the string that specifies the formatting, which will use the arguments in the
comma-separated-arg-list to sequentially fill formatting parameters in the ‘format$’. The comma-separated-arg-
list entries can be numeric or string expressions, although the type must match the ones specified in ‘format$’.

NOTE:
The behavior of this code is very dependent upon the library used. The behavior of SPRINTF may very
possibly differ between EBTKS and the Series 80 Emulator, due to different sprintf() library routines being
linked in for the different environments. Most of the more ‘common’ sprintf() options should behave the same
and be supported. However, some of the less common ones may work differently or not work at all. Beware.

The format$ string will simply output any normal text included, but whenever it sees a ‘%’ character, that will start
the formatting of an argument from the arg-list (unless the ‘%’ is immediately followed by another ‘%’, in which
case the two are replaced by a single ‘%’ character in the output and no arg-list items are used). The general
format of the % formatting is:

%[flags][width][.precision]type

NOTE:
The []’s in the above indicate optional things, they are not included in your format$.

[flags] can be any (or none) of the following

- left-align output rather than right-align output (the default)
+ prepends a plus for positive signed-numeric types (the default
 does not prepend anything for positive values)
SPACE (space character, not the word SPACE) prepends a space for the
 sign of positive values
0 if [width] is specified, prepends zeros for numeric types instead of spaces
alternate forms:
 for g and G types, trailing zeros are not removed
 for f, F, e, E, g, G types, the output always contains a decimal point.
 for o, x, X types, 0, 0x, 0X respectively is prepended to non-zero numbers.

.

[width] is a number that specifies the MINIMUM NUMBER of characters to output, used to pad output
of smaller numbers; no truncation, though, of numbers too large for the width specified.

[.precision] is a number that specifies a MAXIMUM limit on the output, depending upon the ‘type’.

NOTE:
Both [width] and [.precision] can either be a literal number included in the ‘format$’ OR they can be the ‘*’
character, in which case the ‘*’ gets replaced by a number from the arg-list.

'type' is a single letter indicating the desired formatting of the next item
 from the arg-list
i or d format the next argument (MUST be numeric) as a signed integer.
u formats the next argument (MUST be numeric) as an unsigned integer.
f or F formats the next argument (MUST be numeric) as a REAL in fixed-point
 notation. The only difference is whether VERY large or VERY small numbers
 are output as upper or lowercase INF, INFINITY, or NAN.
e or E formats the next argument (MUST be numeric) in standard
 "[-]d.ddd e[+/-]ddd" form. The only difference is the case of the 'e' or
 'E' used for the exponent.
g or G format the next argument (MUST be numeric) in either fixed-point or

SPRINTF dst$Var, format$ [, comma-separated-arg-list]

(72)

Tony Serra
Typewritten text
(Cont'd)

 standard-exponential format, whichever is more appropriate for the magnitude.
x or X formats the next argument (MUST be numeric) as a hexadecimal value.
o formats the next argument (MUST be numeric) as an octal value.
s copies the next argument (MUST be string) into the output.
c outputs a single character to the output. The argument may be the
 NUMERIC value of the character, or the argument may be a STRING in
 which case the FIRST character is output.

You can also include special characters in the output by placing these character
strings in the 'format$':
 \\ outputs a single '\' character
 \r outputs a CR character
 \n outputs a LF character
 \t outputs a TAB character
 \xHH outputs a character who's value is specified by the two HH hexadecimal digits
 \nnn outputs a character who's value is specified by the three nnn octal digits

For example

SPRINTF A$, "\t\r\n"
 would achieve the exact same thing as
SPRINTF A$, "%c%c%c",9,13,10

 You could also achieve the same thing by:
SDEOL 1
SPRINTF A$, "\t%s", SDEOL$

Possible Errors

SD ERROR (213D) formatted output length > 1024 characters
BAD FORMAT (219D) something wrong with format$
FORMAT/ARG MISMATCH (220D) argument list doesn’t line up with format$

LISTROMS 0 | non-0
Top

If the supplied argument is 0, then a reference listing will be sent to the CRT IS device, showing all known Series
80 ROMs, their ROM numbers (in both octal and decimal), and indicate whether each ROM was available for the
HP-85 class of machines and/or for the 87 class of machines.

If the supplied argument is non-0, then the same listing will be shown, but for ONLY the ROMs that are currently
present in the system.

When non-zero is used to list the INSTALLED ROMs, only AUX ROM 1 (361) will be listed, as it’s the only one in
the systems ROM table. But if AUX ROM 1 is there, you can count on AUX ROMs 2 (362) and 3 (363) being
there as well, or you’ll get an error when you try to use any AUX ROM features.

Possible Errors

none

(73)

POKE address, byteVal
Top

Writes the ‘byteVal’ to the ‘address’ in memory. Both values are decimal values. You can use the Assembler
ROM’s DEC() function to specify values in octal.

Possible Errors

none

PEEK(address)
Top

Return Value

Reads a byte from memory at ‘address’ and returns it as the function value. The ‘address’ is specified in
decimal and the returned value is decimal. The Assembler ROM’s DEC() and OCT() functions can be used
to convert.

Possible Errors

none

RPOKE rom#, address, byteVal
Top

Same as POKE, except a ROM number can be specified, which is useful for writing bytes to a bank-swapped
ROM, which is normally not terribly useful, since ROMs can’t be written to. However, the AUX ROMs are special
in that they have 3 KB of RAM in the middle of the ROMs that is used for the AUX ROM code to communicate
with EBTKS (and vice versa). So this function (and RPEEK) can be useful to AUX ROM / EBTKS developers.

Possible Errors

none

RPEEK(rom#, address)
Top

Return Value

Reads a byte from the specified bank-selected ROM.

Possible Errors

none

(74)

HELP [optional quoted or unquoted string]
Top

EBTKS will have help screens that provide various information about the Series 80 computers, their keywords,
and whatever people write up. The HELP keyword lets you request the help screen of your choice, and
(assuming it’s found) EBTKS will save the current CRT contents, display the help, then restore the CRT contents
when you press a key.

Possible Errors

NOT FOUND (224D) if requested help screen is not found

Keyboard Functionality

KBDBUFFER <0 | non-zero>
Top

Takes over keyboard and buffers up to 16 keys at a time if arg==non-zero, else turns OFF keyboard buffering
and releases the keyboard.

Possible Errors

INV MODE (214D) if run in “calculator mode” (only valid in running program).

KBDISKEY
Top

Returns 0 if no keys in buffer, else returns 1.

Possible Errors

INV MODE (214D) if run in “calculator mode” (only valid in running program).

KBDKEY
Top

Returns the next keycode from the keyboard buffer.

Possible Errors

INV MODE (214D) if run in “calculator mode” (only valid in running program).

NULL DATA (149D) if no keys in buffer. (75)

Tony Serra
Typewritten text
•

CRT Functionality
All of the following ‘CRT’ statements/functions apply ONLY to the ALPHA mode display.

CRTSETTOP row
Top

Sets CRT start row (0-63 on HP85, 0-53 (ALPHA) or 0-203 (ALPHALL) on HP87). This is the row# of CRT
memory that appears on the top row of the CRT display.

Possible Errors

none

CRTGETTOP
Top

Returns the current row# of display memory for the top row of the CRT display.

Possible Errors

none

CRTREAD$(row, column, len)
Top

Reads from CRT at (row,col) and returns a string of ‘len’ length from that location.

Possible Errors

none

CRTWRITE string, row, column
Top

Writes ‘string’ to CRT at (row,col). ‘row’ is absolute in CRT memory, NOT relative to CRT SETTOP ‘row’, so you
can write to CRT memory that is not currently displayed.

Possible Errors

none

(76)

CRTROWS
Top

Returns # of rows on CRT display (16 for HP85, 16 or 24 for HP87).

Possible Errors

none

CRTCOLS
Top

Returns # of columns on CRT display (32 for HP85, 80 for HP87).

Possible Errors

none

CRTON <0 | non-zero>
Top

Blanks or unblanks CRT display (doesn’t affect memory contents, just whether they’re displayed or not).

Possible Errors

none

CRTCURSOR state,[row,col]
Top

Sets cursor to REPLACE (0) or INSERT (non-zero) mode, and optionally moves the cursor to (row,col).

Possible Errors

none

CRTCURSCOL
Top

Returns cursor column number.

Possible Errors

(77)

Tony Serra
Typewritten text
•none

CRTCURSROW
Top

Returns absolute (NOT relative to TOP row) cursor row number.

Possible Errors

none

Options/Settings

SDSLASH 0 | non-0
Top

Controls whether ‘/’ or \’\\’ is used in paths returned to the user.

SDSLASH 0 sets it to ‘/’ (the default)
SDSLASH 1 sets it to \’\\’.

This setting is remembered via an SD file over a power cycle.

Possible Errors

none

SDSLASH$
Top

Return Value

Returns a 1-character string containing either ‘/’ or \’\\’

Possible Errors

none

SDEOL 0 | non-0
Top

Controls whether SDEOL$ returns LF or CR/LF as the EOL sequence.

(78)

Tony Serra
Typewritten text
(Cont'd)

SDEOL 0 sets it to LF (the default)
SDEOL 1 sets it to CR/LF.

This setting is remembered via an SD file over a power cycle.

Possible Errors

none

SDEOL$
Top

Return Value

Returns a 1-character or 2-character long string containing the current EOL sequence, either LF or CR/LF.
Good for using in SPRINTF statements when writing text to an SD file.

Possible Errors

none

Miscellaneous Commands

AUXREV
Top

Return Value

Returns the AUX ROMs revision number (from ROM 361)

Possible Errors

none

EBTKSREV$
Top

Return Value

Returns a string containing a date and time of building the EBTKS firmware

Possible Errors

none

(79)

RMIDLE
Top

This is not an actual command that can be typed at the Series 80 keyboard, it is used as a bidirectional channel
between the Series 80 computer and EBTKS for tasks that involve passing data that is not a function of program
execution, such as the EBTKS injecting characters into the keyboard stream, or intercepting keyboard character
before the Series 80 computer "sees them"

more details later

SETLED <1 | 2 | 3>, R#, G#, B#
Top

LED 1 is LED closest to the Power Inlet of the HP8x computer

LED 2 is LED closest to the EBTKS SD Card

First parameter:
1 Set LED 1

2 Set LED 2

3 Set both LEDs to the same color

Physically, LED 1 and 2 contain 3 internal LEDs and a controller integrated circuit (IC) within a 5 x 5 mm
package, in the two back corners of the EBTKS circuit board. These 3 internal LEDs in each package emit light
in either Red, Green, or Blue wavelength. By adjusting the brightness of these internal LEDs, a vast range of
colors and brightnesses can be achieved. A web search for WS2812B or WS2812E datasheet can provide
further technical information.

The SETLED command sends the R, G, B values to the IC, which in turn adjusts the intensity of the respective
LEDs.

The LEDs can nominally show 16 million colors (a 24 bit value) but realistically very small changes in the control
values will not be perceptible. This is particularly true at the brighter end of the brightness range. Each of the
three parameters R, G, and B are numbers in the range 0 to 255. 0 is off, and 255 is full brightness for that color.
Because the LEDs are not ideal, and they are not intensity matched, and are discrete with some gap between
them (less than a mm), the mixing of the light is far from perfect and trying to get white light will be disappointing.
Also the LEDs are quite bright and I find that values over 60 can be hard to look at directly. Your mileage may
vary.

Possible Errors

ARG OUT OF RANGE (system 11D) (if LED# is not 1,2, or 3)

(80)

This command will re-boot your system, resetting both the Series80 computer and EBTKS. Any modified
program that is in the Series80 computer memory will be lost, just like the SCRATCH keyword. Save your
programs often when doing development.

LIF DISK FEATURES

RSECTOR dstVar$, sector#, msus$
Top

Reads a raw 256-byte sector from the specified drive.

'dstVar$' must be dimensioned to at least 256 bytes (which is where
 the sector will be read into).
'sector#' is a number from 0 to NumSectors-1 (where NumSectors is
 the number of sectors available on the disk).
'msus$' is the ":Dxxx" specification of the disk drive.

Possible Errors

Typical Mass Storage ROM errors

WSECTOR src$, sector#, msus$
Top

Writes a raw 256-byte sector to the specified drive.

WARNING!!! Be VERRRRRRRY careful using this, as you can easily trash your disk and lose
ALL files stored on it!!!!

Possible Errors

Typical Mass Storage ROM errors

SDEXPORTLIF LIFname$, SDname$ [, headerFlag]
Top

Exports a LIF file from a LIF disk to an SD file on the SD card. No translation of any sort is done on the contents
of the file.

If the LIFname$ contains only an MSUS rather than a filename, then the ENTIRE disk is output, including volume
and directory sectors and ALL files, resulting in an “emulated disk file” that can be used with the Series 80

BOOT

(81)

Tony Serra
Typewritten text
(Cont'd)

emulator or with EBTKS on the SD card, or shared with others.

headerFlag:
If 0, then no “LIF header” is written at the start of the SD file, and ONLY the ‘valid’ bytes from the LIF file are
written. If non-0, then a 512-byte “LIF header” (on volume sector, one directory sector) is written to the file,
followed by ALL the sectors from the LIF disk that were allocated to the file (which may include a bunch of
‘empty’ unused sectors).

SDEXPORTLIF is a DISK-ONLY statement, it will result in an error 115: INVALID MSUS if attempted on the :T
tape drive.

Possible Errors

INVALID MSUS (115D)
FILE/PATH (217D) if disk is not LIF formatted
FILE NAME (167D) if LIF file is not found
FILE SIZE (223D) if the LIF file is >65536 bytes long

SDIMPORTLIF LIFname$, SDname$
Top

Single file version

Import a file on the SD Card named SDname$ that must be in LIF file format.

Such files may be created by the SDEXPORTLIF, but also the output of Everett Kaser’s ASM85 program. The file
is stored on a LIF disk, which could be a physical disk, or an emulated disk provided by EBTKS. LIFname$ can
include an msus$.

The LIF file format has a headerFlag=1 (i.e., with a “LIF header” included, containing volume and director
‘sectors’). The SD file MUST be prefaced with a “LIF header” (a 256-byte “Volume sector” and a 256-byte
“Directory sector”).

Examples

SDIMPORTLIF “MYPROG:D300”, “/SDDir/prog.bin”
The imported BIN program created with ASM85 and in the directory SDDir on the SD Card will be
stored on disk D300 with the name MYPROG and the CAT command will show that the type is BPGM

SDIMPORTLIF “data”, “peoplesnames”
The imported LIF file that is in the current working directory on the SD Card, named “peoplesnames”
will be stored with the name “data” on the current MASS STORAGE IS drive. Remember, the imported
file must be in LIF format, so probably originally written to the SD Card with the SDEXPORTLIF
command

(82)

Tony Serra
Typewritten text
(Cont'd)

If the LIFname$ doesn’t include a filename, but rather is just an MSUS$, then the SDname$ file is expected to be
a full “emulated LIF disk,” such as SDEXPORTLIF would create if it is run with just an MSUS for the LIFname$.

SDIMPORTLIF is a DISK-ONLY statement, it will result in an error 115: INVALID MSUS if attempted on the :T
tape drive.

Possible Errors

SD ERROR (213D) if error reading SD file
INVALID MSUS (115D) if problem with LIF file name
FILE/PATH (217D) if disk is not LIF formatted
FILE NAME (167D) if SD file is not found
FULL (MS ROM 128D) if the disk is too full

SDPATH$(index#, path$)
Top

Return Value

Returns one element of path$
If index# is positive and non-zero, 1 returns 1st element, 2 returns 2nd, etc.
If index# is negative, -1 returns last element, -2 returns 2nd from last, etc.
If index# is ONE greater beyond the number of elements, “” (zero-len string) is returned.
Otherwise, error.

Possible Errors

11 ARG OUT OF RANGE (if index# is out of range)

SDCHAIN name$
Top

Same as system CHAIN, just from SD file (created via SDSTORE).

Caution:

There is no file type checking. If you SDLOAD a file that was not SDSTORE’d, chaos will be unleashed and
the end of the universe will be nigh.

Possible Errors

FILE/PATH (217D) error in file/path name, or error opening/creating the file

Top

Whole Disk version

(83)

Stores the Binary Program currently in memory to an SD file. A “LIF header” is included on the front of the file.
This is essentially a shortcut way of doing STOREBIN “filename” and then SDEXPORTLIF “filename”,”SDname”.

Possible Errors
FILE/PATH (217D) error in file/path name, or error opening/creating the file
SD ERROR (213D) if write failed to write everything

SDLOADBIN nameSD$
Top

Loads a Binary Program into memory from an SD file that was SDSTOREBIN’d or SDEXPORTLIF’d.

Caution

There is no file type checking. If you SDLOADBIN a file that was not SDSTOREBIN’d, or SDEXPORTLIF’d,
chaos will be unleashed and the end of the universe will be nigh.

Possible Errors

FILE/PATH (217D) error in file/path name, or error opening/creating the file

SDBATCH nameSD$
Top

Reads characters from nameSD$ and types them on the display. End-of- lines (CR/LF or LF) cause the END
LINE key to be sent. Other Series 80 specific keys can be sent using the \ character followed by the three octal
digits of the keycode.

The CRT may have text on the cursor line, rather than a clear screen. As you know, when you type a command,
if there are characters on the line after the command you have typed, it will mess up your command. For
HP85A/B, you must also make sure that the previous line does not have a character in the last position
(character position 32) as that will cause the previous line to be treated as part of the command too. Here are
two strategies that could work:

1. Clear the screen before entering commands using octal \222 at the beginning of the character sequence
2. Clear the current line with “-line” code \240 , then move down 1 line (\242) and clear that line as well

(\240), then enter the desired command. So the beginning of “command” would be
“ \240\242\240 rest of the command”
This sequence assumes the cursor is in column 1.

You don’t need to use \232 for the end of line character, or \042 for the double quote characters. Normal
ends of lines in the batch file will be interpreted as the end line that the HP85 expects.

The contents of the batch file could be:

1 LOAD "LEDTEST-1"
2 RUN

SDSTOREBIN nameSD$

(84)

Tony Serra
Typewritten text
(Cont'd)

Unlike the batch files on Windows OS systems, this batch capability is very simple. Just the sequential transfer of
text.

Here is a link to a table of Octal Codes .

Possible Errors

FILE/PATH (217D) error in file/path name, or error opening/creating the file

Other error messages
AUXROM has some internal functions that are called by other functions, and these internal functions can also
return error codes

LOW-LEVEL FUNCTIONS
For Diagnostics and testing new ideas

These three Keywords can be used for diagnostic purposes to test the AUXROM code and also as hooks to write
EBTKS routines without writing new AUXROM code.

For all three of these Keywords (AUXCMD, AUXBUF$, AUXOPT$)

0-16 bytes of opt$ get written to A.BOPT00-A.BOPT15
buf$ gets written to A.BUFx where ‘x’ is buf#.
A.BLENx gets set to the length of buf$.
usage# gets written to A.BUSEx.
MBx gets set to 1.
x gets written to HEYEBTKS to send the command.

Note that the above memory references are in terms of the labels used in the AUXROM source code. The
equivalent locations in EBTKS C code are as follows

A.BOPT00-A.BOPT15 AUXROM_RAM_Window.as_struct.AR_Opts[16]
A.BUFx AUXROM_RAM_Window.as_struct.AR_Buffer_0
 AR_Buffer_1
 AR_Buffer_2
 AR_Buffer_3
 AR_Buffer_4
 AR_Buffer_5
 AR_Buffer_6
A.BLENx AUXROM_RAM_Window.as_struct.AR_Lengths[8]
A.BUSEx AUXROM_RAM_Window.as_struct.AR_Usages[8]
MBx AUXROM_RAM_Window.as_struct.AR_Mailboxes[32]

These are mostly of use to AUXROM and EBTKS devlopers.

Avoid use, except for these specific cases:

AUXCMD buf#, usage#, buf$, opts$
AUXOPT$(buf#, usage#, buf$, opts$)
AUXBUF$(buf#, usage#, buf$, opts$)

(85)

AUXCMD buf#, usage#, buf$, opts$
Top

How to use AUXCMD:

A command is setup using the buffer (and matching mailbox and usage) specified by buf# (0..7)
The related usage[buf#] is set to usage# (this is the function code)
The string buf$ is copied to the designated buffer, and the related length values is set appropriately
At most 16 bytes from the string opt$ are copied to AUXROM_RAM_Window.as_struct.AR_Opts[16]
A call is made to EBTKS, specifying the buffer number buf#
EBTKS processes the specified command (in usage[buf#]). There is no return value
The appropriate usage location is set to 0 if there is no error, or an error code
EBTKS indicates completion by setting the appropriate mailbox to 0

Possible Errors

ARG OUT OF RANGE (system 11D)
INVALID PARAMETER (system 89D)
STRING OVERFLOW (system 56D)
MEMORY OVERFLOW (system 19D)
custom AUXROM msg (209D)

Possible Warning

NULL DATA (system 7)

AUXOPT$(buf#, usage#, buf$, opt$)
Top

How to use AUXOPT$:

A command is setup using the buffer (and matching mailbox and usage) specified by buf# (0..7)
The related usage[buf#] is set to usage# (this is the function code)
The string buf$ is copied to the designated buffer, and the related length values is set appropriately
At most 16 bytes from the string opt$ are copied to AUXROM_RAM_Window.as_struct.AR_Opts[16]
A call is made to EBTKS, specifying the buffer number buf#
EBTKS processes the specified command (in usage[buf#]) and returns 16 bytes of data in
AUXROM_RAM_Window.as_struct.AR_Opts[16]
The appropriate usage location is set to 0 if there is no error, or an error code
EBTKS indicates completion by setting the appropriate mailbox to 0
The AUXROM code completes processing of AUXOPT$ by returning the options to the BASIC environment
as the string result of making this call to AUXOPT$

(86)

Tony Serra
Typewritten text
(Cont'd)

A 16-byte string is returned containing the bytes of A.BOPT00-A.BOPT15.

Possible Errors

ARG OUT OF RANGE (system 11D)
INVALID PARAMETER (system 89D)
STRING OVERFLOW (system 56D)
MEMORY OVERFLOW (system 19D)
custom AUXROM msg (209D)

Possible Warning

NULL DATA (system 7)

AUXBUF$(buf#, usage#, buf$, opts$)
Top

How to use AUXBUF$:

A command is setup using the buffer (and matching mailbox and usage) specified by buf# (0..7)
The related usage[buf#] is set to usage# (this is the function code)
The string buf$ is copied to the designated buffer, and the related length values is set appropriately
At most 16 bytes from the string opt$ are copied to AUXROM_RAM_Window.as_struct.AR_Opts[16]
A call is made to EBTKS, specifying the buffer number buf#
EBTKS processes the specified command (in usage[buf#]) and returns a string in the same buffer that was
use to pass buf$ to it. The appropriate length value is set to the length of the string.
The appropriate usage location is set to 0 if there is no error, or an error code
EBTKS indicates completion by setting the appropriate mailbox to 0
The AUXROM code completes processing of AUXBUF$ by returning the string in the buffer to the BASIC
environment as the string result of making this call to AUXBUF$

Return Value

A string is returned containing the A.BLENx bytes of A.BUFx.

Possible Errors

ARG OUT OF RANGE (system 11D)
INVALID PARAMETER (system 89D)
STRING OVERFLOW (system 56D)
MEMORY OVERFLOW (system 19D)
custom AUXROM msg (209D)

Possible Warning

NULL DATA (system 7)

Return Value

(87)

ADDING NEW FEATURES TO THE HP-85
AUX ROMS

ADDING NEW KEYWORDS
In 85aux1.src, find these tables:

KEYWORDS ASCII keyword table
TROM#S single-byte values of the ROM# in which each keyword’s runtime code exists
RUNTIM runtime routine table
PARSES parse routine table

Find an appropriate open slot in these tables that:

Isn’t in use (ALL of the following must be true):
It has a ‘200’ in the KEYWORDS table
It has a ‘0’ (or is bsz’d) in the TROM#S table
It is bsz’d in both RUNTIM and PARSES tables

Isn’t marked RESERVED, unless you have to use one of those in order for your longer keyword to not be
‘blocked’ by an already existing shorter keyword. For example, the MOUNT keyword already exists. If you
try to add the MOUNTAIN keyword AFTER the MOUNT keyword it will be ‘blocked’, the PARSER will never
see the MOUNTAIN keyword, because it will find the MOUNT keyword first. Therefore, you’ll need to use a
RESERVED slot EARLIER in the table than the MOUNT keyword so that both MOUNTAIN and MOUNT will
be spotted by the PARSER. This is the ONLY time you should use a keyword slot marked in the
KEYWORDS table as RESERVED.

NOTE:
Finding or making an open slot in the above tables MAY involve moving the 377 marker at the end of the
ASP keywords in the KEYWORDS table. Is is CRITICAL that this table not get longer or shorter (in terms of
the number of ENTRIES, not in terms of the number of BYTES), as there are tokens at the very end of this
table that are “hidden (or worker) tokens” that are parsed into the token stream by an actual keyword (a
particular example, at this point in time, are the three tokens 374, 375, and 376 which are used by the
SPRINTF keyword to do “hidden things” at runtime). So, to keep from screwing those up, if you want to add
a new keyword and need to move the 377 end-of-table marker, for each keyword you add, you must:

Delete the first 200 byte immediately AFTER the 377 marker
Insert an ASP statement immediately BEFORE the 377 marker

You may NOT insert new keywords in between existing ones, as that would change the old keywords’
TOKEN#, which would cause any programs written using an older version of the AUX ROM to stop working
and likely crash, because the parsed tokens in that stored program would no longer match the token
numbers in the new AUX ROM.

Once you’ve found your slot:

1. Add the ASCII keyword to the KEYWORDS with an ASP opcode.

(88)

Tony Serra
Typewritten text
(Cont'd)

2. Add the AUX ROM ROM#, in which the RUNTIME routine for the keyword is located, to the TROM#S table
in the matching ‘slot’.

3. Add the address of the runtime routine in AUX ROM 1 to the RUNTIM table.

For most STATEMENTS, this will be either “RUN1.” (if it’s a NON-programmable statement, i.e., a
calculator-mode-only COMMAND) or “RUN2.” (if it’s a normal PROGRAMMABLE statement). The ‘1’ in
“RUN1.” reminds you that the attribute is 141, whereas the ‘2’ in “RUN2.” reminds you that the attribute is
241. For most functions, there will probably already be an existing runtime entry point in AUX ROM 1 that
has the right attributes for your function, and you can either use an already-existing label following those
attributes, or add a new label. For example, if you’re adding a numeric function with no arguments, the
attributes your runtime entry point needs are “0,55”, and searching through the function runtime entry
points in AUX ROM 1, you’ll find that AUXERRN. has those attributes. So, you could either just use
“AUXERRN.” as your runtime entry point, or add a new unique label immediately after the line containing
the “AUXERRN.” label, so that the “0,55” attributes are immediately before both labels.

If you can’t find an already existing function with the right attributes, then you’ll need to create a new entry.
Many of these function entry points have no code and so will simply “fall through” the attributes of following
functions. As long as those attribute bytes are all <200 (octal), they will be executed as ARP and/or DRP
instructions, causing no damage, taking very little time, and saving bytes in the ROM. All of these functions
eventually wind up at “RUN2.” at runtime, along with the normal STATEMENTS, and the “RUN2.” routine
uses the TROM#S table to call the F_RUN function in the appropriate AUX ROM to actually execute the
REAL runtime code for that keyword.

4. Add the address of the parse routine (if not a function) to the PARSES table. There are many ‘common’
parse routines already existing in the AUX ROM 1. If your new statement’s argument list matches the
argument list of a previously created keyword, then you can just add a label for it and use the same parse
routine. If you have special parsing needs, then you’ll need to add your own code, which may parse the
whole statement (if it’s VERY brief) or call the actual PARSE routine in the other AUX ROM via FUNTAB.

5. In the other AUX ROM, where the actual runtime code for the keyword exists, be sure to add the address of
the actual runtime routine to that AUX ROM’s RUNTIM table. See AUXROM2 and AUXROM3 for examples.

As an alternative to all of the above, I have found that just asking Everett to do it for me has worked quite well.
PMF 11/27/2020

Some features that you might wish to add may involve taking over one or more system ‘hooks’. Also, some
keywords you add may need to do some form of initialization at power-on or other times. The AUXROM 1, which
contains all of the keyword and runtime/parse tables that the system can ‘see’ also contains the INIT routine.
This init routine, once it has done anything it needs to do, calls an INIT routine in each of the sub-AUXROMs, to
give them a chance to do whatever. It does this by calling the function in each AUX ROM’s FUNTAB (see F_INIT
in 85auxdef.src and the FUNTAB in each AUXROM, the first entry of which is usually “def R_INIT”. It’s CRITICAL
that you maintain the exact order and value of all of the F_ equates in 85auxdef.src, and construct/edit the
FUNTAB tables accordingly, or the Holy Howling Hounds of Hades will invade your workspace.

ADDING NEW NON-KEYWORD FEATURES

(89)

Octal Keycodes for Special Keys on HP 85
A/B Keyboard

Key Octal Key Octal Key Octal Key Octal

K1 200 INIT 214 -unused- 230 -CHR 244

K2 201 RUN 215 BKSPACE 231 HOMECURS 245

K3 202 PAUSE 216 ENDLINE 232 RESULT 246

K4 203 CONT 217 FASTBKSPACE 233 -unused- 247

K5 204 STEP 220 LFCURS 234 DELETE 250

K6 205 TEST 221 RTCURS 235 STORE 251

K7 206 CLEAR 222 ROLLUP 236 LOAD 252

K8 207 GRAPH 223 ROLLDN 237 -unused- 253

REW 210 LIST 224 -LINE 240 AUTO 254

COPY 211 PLIST 225 UPCURS 241 SCRATCH 255

PAPADV 212 KEYLABEL 226 DNCURS 242

RESET 213 -unused- 227 INS/RPL 243

Octal Keycodes for Special Keys on HP 86
and 87 Keyboard

Key Octal Key Octal Key Octal Key Octal

K1 200 INIT 214 HCURS 230 DOWN CURSOR 244

K2 201 RUN 215 BKSPACE 231 K12 245

K3 202 PAUSE 216 ENDLINE 232 RESULT 246

K4 203 CONT 217 FASTBKSPACE 233 -unused- 247

K8 204 STEP 220 K7 234 A/G 250

K9 205 ROLL up 221 -LINE 235 ROLL down 251

K10 206 TEST 222 INS/RPL 236 RIGHT CURSOR 252

K11 207 K14 223 LEFT CURSOR 237 -unused- 253

-CHAR 210 LIST 224 E 240 K13 254

CLEAR 211 PLIST 225 K5 241 TRACE/NORMAL 255

-unused- 212 KEYLABEL 226 K6 242

RESET 213 -unused- 227 UP CURSOR 243

(90)

EBTKS Downloads

Standard File Set for the SD card
Definition:
A LIF disk image is a file on the MicroSD Card, typically in the /disks directory, and with a file
extension of .dsk
It represents either a floppy disk (size is 264 kB) or a 5 MB Winchester disk (size is 4743 kB). When
you read or write to disks that are emulated by EBTKS, these are the files that represent those disks.
Internally, these files have a directory and the files you see with a CAT command. For example, if the
CONFIG.TXT file contains the following section:

{
 "Comment": "msus$ 300",
 "unit": 0,
 "filepath": "/disks/EBTKS_1.0_85.dsk",
 "writeProtect": false,
 "enable": true
},

EBTKS_1.0_85.dsk is the LIF disk image that is seen as :D300 , which is the default mass storage
device with EBTKS. When you type CAT, you are getting the catalog (directory listing) from inside this
file. When you load a program from this “disk”, you are actually reading the program from somewhere
within this file, as indicated by the internal directory information. Similarly, if you are saving a program
or writing data to :D300 (the default mass storage device) you are actually modifying this file.

Warning:
If you have been developing program and/or writing data to LIF disk images on your MicroSD Card,
these should be saved before overwriting with these downloaded MicroSD Card file sets. See above
definition.

Update V1.0.2: Do I need it?
The primary purpose of release V1.0.2 is to fix a bug that affects some HP86 and HP87 computers. The bug is
due to an unintended interaction between EBTKS and the Graphics ROM (001) in these systems. The HP85A/B
do not have this ROM.

If you are not running programs that display text on CRT when in Graphics mode, the bug will not be seen. If you
run such programs, you may still not see the bug, depending on the version of the Graphics ROM. Here is a
trivial test program:

GRAPH @ MOVE 50,50 @ LABEL "HELLO WORLD!"

(91)

Tony Serra
Typewritten text
(Cont'd)

If the text is displayed correctly, your system is not affected by the bug.

Regardless of whether this bug affects your computer, this release contains some other updates that you might
find useful. See below

If your HP86/87 displays the bug, and you don’t want to do a full update of the SD Card, See below for
instructions to just do the minimal update.

Update V1.0.2
There are 2 MicroSD Card file sets available for download. One for HP85A/B, and the other for HP86/87. These
are a complete distribution file set, equivalent the SD Card contents when you originally received your EBTKS.
The contents of the two file set are close to identical, with the following differences:

The CONFIG.TXT file in the root directory is copied from a different file, that is also in the root directory
For HP85A, it is a copy of CONFIG.TXT_for_HP85A_Tape_Drive_disabled
For HP87, it is a copy of CONFIG.TXT_for_HP87-32KB

The pre-configured LIF disk images for :D300, :D301 and :D320 are different.
For HP85A/B

:D300 is associated with /disks/EBTKS_1.0_85.dsk
:D301 is associated with /disks/85Games1.dsk
:D320 is associated with /disks/85Games2.dsk

For HP86/87
:D300 is associated with /disks/EBTKS_1.0_87.dsk
:D301 is associated with /disks/87_Action_Games.dsk
:D320 is associated with /disks/87_Galaxy_Patrol.dsk

Please don’t just download and start editing the CONFIG.TXT file. Spend a little time reading the documentation,
and save a whole lot of frustration Working with CONFIG.TXT

The normal way to use an update like this is as follows:

Consider making a backup of your current SD Card, just in case you have any issues.
Unzip the downloaded update in to a temporary directory on your PC/MAC/etc
Make any needed changes to the CONFIG.TXT file
From your existing SD Card, copy any LIF disk images that you have modified to the /disks directory within
the temporary directory on your PC/MAC/etc
Make any other needed changes.
Copy all the files in the temporary directory to an SD Card. If you have more than one SD Card, maybe use
a different one from your existing SD Card for EBTKS.
Put the newly created SD Card in to EBTKS.

The downloaded .ZIP file should be un-zipped into a temporary directory. There are 8 CONFIG.TXT files
provided, with the rest of each file name indicating its specific pre-configuration. Copy the appropriate one to
CONFIG.TXT (you will need to delete or rename the default CONFIG.TXT that is provided)

The CONFIG.TXT file should be inspected to make sure that it matches your Series80 computer, and your
desired ROMs and LIF disk images that are configured in the “hpib” section are what you want.

(92)

http://www.fliptronics.com/EBTKS/Working_with_CONFIG.TXT.html#working-with-config-txt
Tony Serra
Typewritten text
(Cont'd)

On your existing SD Card, if you have been STORE-ing programs or data, then you have modified the related
LIF files in the /disks directory. You should make a copy of these files, and add them to the /disks directory in the
temporary directory where you are building the new SD Card file set for your system.

The complete set of files in the temporary directory should be copied to a blank MicroSD Card, or the existing
one (which hopefully you have made a backup).

What has changed in microSD Card version 1.0.2
Updated all CONFIG.TXT files in the root directory to be more specific to each model of Series80
computer, and some minor errors related to default ROMs and RAM size for HP86B. There are now 8
example CONFIG.TXT files.

For HP86 and 87, virtual disks :D301 and :D320 now point to disk images of HP86/87 games, some/all
authored by Everett Kaser.

Note: These games have not been tested by the author of this page. If you find that to run them you
need to follow some setup, like changing the MASS STORAGE IS setting, etc…, please email Philip
so this page can be updated.

Major improvement to the HELP system for HP85A/B, thanks to Martin Hepperle. He has authored 192
help articles that cover the ROM keywords for

I/O ROM
Advanced Programming ROM
Matrix ROM
Printer/Plotter ROM

You too can see your name here by adding to the HELP system by writing additional pages. They are easy
to do, and given the limits of the 32 character wide screen and maximum of 64 lines of text, terse prose is
an advantage. If you feel inspired, co-ordinate with Everett to avoid duplicated effort

Although not previously documented, in the directory tree starting at /EK_Disks , there about LIF 100 floppy
disk images (any file that is 264 kB) that cover most of the PACs published by HP, and some other assorted
material. To use these LIF disk images

Make a copy of the file and place it in the /disks directory
Add a file name extension of .dsk
Edit your CONFIG.TXT file to assign it to one of the existing MSUS definitions, or add a new one

In the directory /other_disks_85 is:

Waveform Analysis PAC for HP85

In the directory /other_disks_86_87

Waveform Analysis PAC for HP86 and 87
Circuit Analysis PAC for HP86 and 87
Math PAC for HP86 and 87

The above two directories have a subdirectory with some documentation PDFs.

(93)

MicroSD Card file set as a ZIP for HP85A like
computers
This SD Card File Set is intended to work with the following Series80 Computers

HP83
HP9915A
HP85A
HP85AEMC
HP85B
HP9915B

SD_Card_Image_V1.0.2_for_HP85A_and_B_2022_01_21.zip

Release 1.0.2 , January 21th 2022

MicroSD Card file set as a ZIP for HP86A/B and HP87
and 87XM computers
This SD Card File Set is intended to work with the following Series80 Computers

HP86A
HP86B
HP87
HP87XM

SD_Card_Image_V1.0.2_for_HP86_and_87_2022_01_21.zip

Release 1.0.2 , January 21th 2022

Minimal update for for Graphics Text bug
If your HP86/87 displays the Text bug described above, the minimum update is to download the file set for
HP86/87 and copy the following 8 files from the /roms87 directory of the download to the same named directory
on your SD Card.

rom361
rom361.lst
rom362
rom362.lst
rom363
rom363.lst
rom364
rom364.lst

(94)

http://www.fliptronics.com/EBTKS/_downloads/b4edda13b4af5157db43c47ce3455e9a/SD_Card_Image_V1.0.2_for_HP85A_and_B_2022_01_21.zip
http://www.fliptronics.com/EBTKS/_downloads/270c9b7e10ee9fcad7982feb1a124174/SD_Card_Image_V1.0.2_for_HP86_and_87_2022_01_21.zip

Release 1.0.0 , July 12th 2021

EBTKS_Firmware_2021_07_12_V1.0.0.hex
This firmware is intended to work with all Series80 Computers

After downloading the EBTKS Firmware, proceed to Updating the EBTKS Firmware

CONFIG.TXT
If you are downloading one of the SD Card images, it already has all of the following example CONFIG.TXT files
in the root directory.

The following downloads are if you have messed things up and you need a clean copy to get something that
works.

All of these are from the V1.0.2 update released of 21 January 2022

CONFIG.TXT_for_HP85A_Tape_Drive_disabled

CONFIG.TXT_for_HP85A_with_Tape_Drive

CONFIG.TXT_for_HP85B_Tape_Drive_disabled

CONFIG.TXT_for_HP85B_with_Tape_Drive

CONFIG.TXT_for_HP86A-64KB

CONFIG.TXT_for_HP86B-128KB

CONFIG.TXT_for_HP87-32KB

CONFIG.TXT_for_HP87XM-128KB

After downloading one of these CONFIG files, rename it to CONFIG.TXT . Depending on your system
configuration, make any necessary edits to match your requirements, then copy it to the root directory of the SD
Card. Detailed instruction for editing CONFIG.TXT can be found here Working with CONFIG.TXT

EBTKS Quick Reference Guide (QRG)
Martin Hepperle has created a compact guide to all the new keywords that are implemented by the AUXROMS
on EBTKS.

Download the QRG

SanDisk Brand SD Card Datasheet
SDCard Datasheet

Firmware for Teensy 4.1

(95)

http://www.fliptronics.com/EBTKS/_downloads/85530ad77d3d4545b75800cf70e1e76c/EBTKS_Firmware_2021_07_12_V1.0.0.hex
http://www.fliptronics.com/EBTKS/Updating_the_EBTKS_Firmware.html#updating-the-ebtks-firmware
http://www.fliptronics.com/EBTKS/_downloads/f808ce9bb5ca930d686d422364e5dc0e/CONFIG.TXT_for_HP85A_Tape_Drive_disabled
http://www.fliptronics.com/EBTKS/_downloads/c3cd9a6d6ced8998402805d94591583f/CONFIG.TXT_for_HP85A_with_Tape_Drive
http://www.fliptronics.com/EBTKS/_downloads/da8993c1e0596798343e1c4ed39c7dcc/CONFIG.TXT_for_HP85B_Tape_Drive_disabled
http://www.fliptronics.com/EBTKS/_downloads/8043974fddd00c163bd0f0a5c1e6e736/CONFIG.TXT_for_HP85B_with_Tape_Drive
http://www.fliptronics.com/EBTKS/_downloads/402297e25cf87ab159c4f7e30553c92b/CONFIG.TXT_for_HP86A-64KB
http://www.fliptronics.com/EBTKS/_downloads/66e8ce57b1ef74b89071e6ef787a4b5b/CONFIG.TXT_for_HP86B-128KB
http://www.fliptronics.com/EBTKS/_downloads/66e82b3a0551a1ab5851cdcbd6e15682/CONFIG.TXT_for_HP87-32KB
http://www.fliptronics.com/EBTKS/_downloads/3fb75b98e86fcd50aea55827c3297065/CONFIG.TXT_for_HP87XM-128KB
http://www.fliptronics.com/EBTKS/Working_with_CONFIG.TXT.html#working-with-config-txt
http://www.fliptronics.com/EBTKS/_downloads/8695dd6d22d3c3d829b867170dde63ac/EBTKS_QRG-booklet_V1.0_2021_09_28.pdf
http://www.fliptronics.com/EBTKS/_downloads/45ef5224c7f2fcd6eff2d3945d5a2b52/Sandisk_Brand_SD_Cards.pdf

Github
EBTKS Teensy 4.1 Source Code on Github

EBTKS Schematic
V2.0 Schematic (Used for development and Beta Test)

V3.0 Schematic (Production)

All EBTKS with Serial numbers of the form 01-0xx, 02-0xx, 03-0xx, 04-0xx, 05-0xx, 06-0xx are V3.0 Schematic,
with no rework or modifications. All are ROHS compliant. All are a mix of automated assembly for surface
mounted parts and hand assembly both at the factory, and by Philip (the Teensy 4.1 sockets and pins)

(96)

https://github.com/Fliptron/T41_EBTKS_FW_1.0
http://www.fliptronics.com/EBTKS/_downloads/4ee00dd53f53df3b8832d60bd81c9d72/Schematic_EBTKS_V2.0_2020-06-24_18-37-21.pdf
http://www.fliptronics.com/EBTKS/_downloads/edcd877f44e5f6331b8197916090c26a/Schematic_EBTKS_V3.0_2021-04-10_17-10-00.pdf

EBTKS 3D Printable cases
A few EBTKS users have designed 3D printable cases. This page is an index of these designs, and links to a
separate page for each design which include additional images, and the files needed to 3D print the case. Some
of these pages also include the design files which could be used as a starting point for a modification of your
own.

Daniel Simpson

Daniel’s 3D case, Top View

More images, STL files and 3D print service

(97)

http://www.fliptronics.com/EBTKS/_images/Daniel_Simpson_3D_case_top_view.jpg
http://www.fliptronics.com/EBTKS/Daniel_Simpson_3D_case.html#daniel-simpson-s-3d-case

Martin’s 3D case, Top View

More images and STL files

Martin Hepperle

(98)

http://www.fliptronics.com/EBTKS/_images/Martin_Hepperle_top.jpg
http://www.fliptronics.com/EBTKS/Martin_Hepperle_3D_case.html#martin-hepperle-s-3d-case

Daniel Simpson’s 3D case

Daniel’s 3D case, Top

(99)

http://www.fliptronics.com/EBTKS/_images/Daniel_Simpson_3D_case_top_view.jpg

Daniel’s 3D case, Back

(100)

http://www.fliptronics.com/EBTKS/_images/Daniel_Simpson_3D_case_back_view.jpg

Daniel’s 3D case, Cover open

(101)

http://www.fliptronics.com/EBTKS/_images/Daniel_Simpson_3D_case_cover_open.jpg

Daniel’s 3D case, Bottom

Download Links

Daniel_Simpson_3D_EBTKS_Bottom_Half.stl (Updated 2021_10_03)

Daniel_Simpson_3D_EBTKS_Top_Half.stl

3D Printing Service

Daniel 3D prints calculator stands for many classic HP Calculators, and has an online store for ordering.
He has now added the 3D case featured on this page.

Daniel's 3D print store

(102)

http://www.fliptronics.com/EBTKS/_images/Daniel_Simpson_3D_case_bottom_view.jpg
http://www.fliptronics.com/EBTKS/_downloads/1792c1ced67e442de60349abd954aa6c/Daniel_Simpson_3D_EBTKS_Bottom_Half.stl
http://www.fliptronics.com/EBTKS/_downloads/7ea08d59bb6e0a6be3f851d9f556d7fb/Daniel_Simpson_3D_EBTKS_Top_Half.stl
https://hp4171.com/shop/ols/products/ebtks-case

Martin Hepperle’s 3D case

Martin’s 3D case, Top

(103)

http://www.fliptronics.com/EBTKS/_images/Martin_Hepperle_top.jpg

Martin’s 3D case, Bottom

(104)

http://www.fliptronics.com/EBTKS/_images/Martin_Hepperle_bottom.jpg

Martin’s 3D case, Cover open

(105)

http://www.fliptronics.com/EBTKS/_images/Martin_Hepperle_top_no_cover.jpg

Martin’s 3D case, Top and Bottom

(106)

http://www.fliptronics.com/EBTKS/_images/Martin_Hepperle_top_and_bottom.jpg

Martin’s 3D case, Close up on Teensy 4.1

Download Links

Martin's STL files are hosted on github

(107)

http://www.fliptronics.com/EBTKS/_images/Martin_Hepperle_close_up.jpg
https://github.com/MartinHepperle/HP-ReproParts/tree/master/Series-80

Updating the EBTKS Firmware
Notes:

EBTKS Firmware is software that is stored on a Flash chip that is part of the Teensy 4.1 module. This is
separate storage from the SD Card that plugs into the Teensy 4.1 module, and holds the file system,
emulated tapes and disks, and the Series80 Option ROMs.

This page documents the process for updating the Firmware.

If you are also updating the SD Card contents, that is done by plugging the SD Card into your computer
(you may need an adapter from SD Card to USB). The SD Card should be seen as a FAT32 file system,
and normal system commands can be used to copy files to and from the SD Card.

If you are using the Micro-B USB port to connect to a terminal emulator to access the diagnostic
channel, this connection must be closed for the firmware update process

Teensy 4.1
The core of EBTKS is a Teensy 4.1 from PJRC. A utility program called the Teensy Downloader is used to
update FLASH memory on Teensy with the operational firmware. When new features are added to EBTKS
or bugs are fixed, a new firmware file will be available on the Downloads page .

The firmware files have a file extension of .HEX

Procedures for doing the update are described below, for Windows, Linux, and Mac computers.

You will need a USB cable that on one end plugs into your computer (typically a USB-A plug), and the other
end must have a Micro-B USB plug, that matches the Micro-B USB socket that is at one end of Teensy.

There is a USB-A socket on the main EBTKS board (bottom edge, near the middle in the picture below). It is
not involved in the update process. Please ignore it.

(108)

https://www.pjrc.com/store/teensy41.html
http://www.fliptronics.com/EBTKS/EBTKS_Downloads.html#ebtks-downloads
Tony Serra
Typewritten text
(Cont'd)

Follow this link to the Teensy Downloader and follow the install instructions for your computer. It is available
for Windows, Linux and Mac computers.

As I only have a Windows PC for doing downloads, I will describe how the firmware update is done with my
computer. Hopefully others with either Linux or MAC will document their experience on their systems, and
send them to Philip, to update this section of the documentation to cover these other systems

Windows
On the Windows page for Teensy Loader there are two downloads:

Teensy Loader Program
LED Blink, Both Slow & Fast

In all of the following description, the references to the white button are to the physical button on the Teensy,
not the image on the Teensy.exe program, which is for a different model of Teensy.

(109)

https://www.pjrc.com/teensy/loader.html
https://www.pjrc.com/teensy/loader_win10.html

Windows Short Form
Download Teensy.EXE and the test blink programs in a ZIP file
Connect the Teensy on EBTKS to your computer with a USB cable to the Micro-USB Connector
Load and run the Fast Blink .HEX program for Teensy 4.1
Put Teensy.EXE into Auto mode
Load and run the Slow Blink .HEX program for Teensy 4.1
Download firmware for EBTKS and program it into the Teensy 4.1

Windows Long Form
The Teensy downloader program is supplied as Teensy.exe , there is no setup process as the downloaded
program is self contained and ready to run. Store it in an appropriate directory on your Windows PC, and if
you want, create a desktop link as you would for any other runnable program.

As shown on the download page on the PJRC website for Teensy.exe , the program has a very simple user
interface. Here is how to use it with EBTKS:

The Teensy needs to have a connection to your computer from the Micro- USB connector on the Teensy 4.1
, see above for the location. After making the connection for the first time, you may have to wait about a
minute for the Windows operating system to retrieve the appropriate device drivers. This mean that your
computer must be connected to the Internet.

The "LED Blink, Both Slow & Fast" test is a .ZIP file. Unpack the .Zip, it will put all the files in a directory
named blink_both. Follow the instruction to check that Teensy.exe works on your system by connecting the
Teensy on your EBTKS board via the Micro-USB connector to your computer. Teesny can remain plugged
into the EBTKS board, and EBTKS can be either plugged into the HP85 with power on or off, or EBTKS can
just be sitting on your desk. It is powered via the USB cable.

There are 38 files in the unpacked blink_both directory. The only two that you will be using are:
blink_fast_Teensy41.hex
blink_slow_Teensy41.hex

At the step where you are instructed to push the white button on Teensy, a red LED will turn on. It is near the
Micro-USB connector. Soon after the red LED comes on the Teensy.exe program will turn the two arrow
icons green. In the Teensy.exe program select "File", and navigate to the first test program
"blink_both\blink_fast_Teensy41.hex". The left green arrow which points down is the program icon. When
you click it, the red LED will get brighter for about a 1/4 of a second during the programming operation.
When this step is complete the brightness of the red LED is lowered to its initial brightness.

Now click the green arrow that points to the right. This causes the Teensy to reboot and run the fast blinking
program. The red LED turns off. Now click the gray-ed out "Auto button". It should turn green. Go to the
"File" menu, and select blink_slow_Teensy41.hex . Press the white button on the Teensy and it should
automatically program and reboot the Teensy. Sometimes the white button press needs to be done more
than once.
If all the above was successful, you can now proceed to program the Teensy with the EBTKS firmware,
which you can download from Downloads page . (110)

Linux
Notes from Mike G. (thanks Mike). Please read all of this section before starting the update process:

This is what I did on my Ubuntu 20.04LTS system to update the firmware on EBTKS

The Teensy flash utility can be found here: https://www.pjrc.com/teensy/loader_linux.html as a tar.gz
file
There are two versions

Download Teensy Program (32 bit)
Download Teensy Program (64 bit)

Download the appropriate one for your system

Open a terminal window and change directory to the folder containing the downloaded tar.gz file

Extract the file with tar, then copy the 00-teensy.rules file to the directory shown:

tar xf teensy_linux64.tar.gz
sudo cp 00-teensy.rules /etc/udev/rules.d/

Reload udev and is required when making config changes

sudo udevadm control –reload

Connect a USB cable between the Micro-B USB connector on Teensy and your computer

Mike G wrote that he unplugged the Teensy from EBTKS. Philip believes this should not be
necessary. Since the pins on Teensy are delicate, avoiding unplugging it from EBTKS is
desireable. Also, to avoid a possible issue with unpowered USB hubs, and performance
limitations with some USB hubs, don’t connect via a USB hub. Connect directly to a USB port on
your computer. Per the note at the top of this page, if you have been using a terminal emulator
via this USB port on Teensy, this connection must be closed. Before unplugging the Teensy
module, please try the following in the order presented, and report back to Philip what your
experience is, so that this documentation can be updated to the least complex procedure.

1. EBTKS plugged into your Series80 computer with the power on
2. EBTKS plugged into your Series80 computer with the power off
3. EBTKS unplugged from your Series80 computer
4. Teensy unplugged from EBTKS. Hopefully not needed

Run the Flash utility, you will probably need to press the white button on Teensy after selecting the
.hex file (in the next step)

sudo ./teensy
(111)

http://www.fliptronics.com/EBTKS/EBTKS_Downloads.html#ebtks-downloads
https://www.pjrc.com/teensy/loader_linux.html
Tony Serra
Typewritten text
(Cont'd)

Browse to the EBTKS_Firmware_R23.hex - under operations pick program. Note that the rev number
is not going to be R23. At this point you will need to press the white button on Teensy to enter
programming mode.

If you had to remove Teensy from EBTKS, reinstall it carefully, taking note of not just the outer 48 pins
but also the two stips of 5 pins. The SD Card connector is close to the edge of the main PCB.

If you are reading this and you are a skilled Linux user, please take a little time to read the above update
process for Windows to guide you, and then please, please, please write a similar version that is Linux
specific, and identifies Linux related commands and things to check that helped you do the update. Send
your text to philip for publication here (and the removal of this message). The rest of the Linux community
will be very appreciative.

Mac
Waiting for someone to submit this section

Un-Bricking a Teensy 4.1
Usually the above firmware update process works, and the Teensy Loader automatically will erase and
reprogram the Flash memory. The fall back is that the loader program will indicate that you need to press
the little white button on the Teensy 4.1 module. When you do this, a LED near the micro-USB connector
turns on at a low brightness red. Then the Teensy Loader erases and programs the Flash memory. During
erase/program the red LED is bright. At the completion of programming the red LED turns off.

A common mistake I make is that I forget to disconnect any terminal emulation program (I use TeraTerm)
from the serial-over-USB connection. So before proceeding in this section, make sure that you don’t have a
serial connection to Teensy active, as that will block firmware updating.

Under some mostly undefined and rare situations the Teensy 4.1 can become non-responsive after a
firmware update. This is usually associated with either a failure to complete the update process, or during
firmware development when new bugs are being added to the code. The indication of this situation is the
inability to update the firmware even when following the above instructions. When Teensy Loader indicates
that you should press the little white button, the red led does not turn on or it does not remain on in the low
brightness mode allowing progress to the erase and program steps. After repeated tries, you are unable to
update or restore the firmware. A common term for this type of condition is that something is “bricked”.
Teensy 4.1 has a backup backup plan.

When Teensy 4.1 is bricked, follow this procedure:

1. Turn the Series80 computer (HP85A/B, HP86A/B, HP87/87XM) power off or turn the power off and
unplug EBTKS. You do not need to unplug the Teensy 4.1 module from EBTKS, and really, you
shouldn’t because the pins are fragile, or the Teensy 4.1 is permanently soldered into EBTKS.

2. Connect the Teensy 4.1 to your PC/Mac/Linux system with the normal USB cable used for firmware
updates. Start up the Teensy Loader

(112)

Tony Serra
Typewritten text
(Cont'd)

and turn off “Auto” mode (Auto icon is dark).

On the file menu, open HEX file, select the EBTKS firmware file. The rest of the Teensy Loader
program window should show the message “Press Button on Teensy to manually enter Program
Mode”

3. Press and hold the the white button on Teensy 4.1 for 15 seconds plus-or-minus 2 seconds. (i.e. from
13 to 17 seconds). At 13 seconds the red LED will flash at low brightness to let you know that 13
seconds has occurred. When this happens, release the button. Depending on the state of the Flash
memory, there may be up to 10 seconds of the red LED being on at low brightness. This is followed by
high brightness for 20 to 30 seconds. Finally, the red LED will turn off, and an orange LED near the
white button will slowly flash. Teensy 4.1 has now been restored to its original factory settings.

4. Click the white button to initiate programming. The Teensy Loader will change to this view

(113)

Tony Serra
Typewritten text
(Cont'd)

and the red LED will be on at low brightness. You can now click the the down pointing green arrow
which will update the firmware on Teensy 4.1 (during the programming the red LED will be bright).
Finally click the green arrow that is pointing to the right to re-boot Teensy 4.1. To indicate that the
firmware has been updated, the orange LED will give three very short blinks every 10 seconds. Click
the dark auto icon to switch back to auto mode for the Teensy Loader

5. If you unplugged EBTKS, you can now plug it back into the Series80 computer.

(114)

Help

AUX ROM HELP “RULES OF THE ROAD”
You can type:

HELP
Shows the top level “85_Index” help file.

HELP THIS
Tries to find a help file called “THIS.txt” and if found, shows it. If not found, does a wildcard search for files
that match “THIS”. If not found, generates “NOT FOUND” error. If exactly 1 is found, shows THAT file,
otherwise if >1 is found, builds an “on the fly” help screen containing up to 64 lines with one link per line for
each file found that matches “THIS” and shows that.

HELP THIS OR THAT
Same as “HELP THIS” except that it doesn’t try to find the exact file first, but rather immediately does a
wildcard search for “THIS*OR*THAT”, then handles the result the same as “HELP THIS” with regards to 0, 1,
or more results.

HELP *THIS

HELP *THIS*

HELP THIS*

HELP THIS OR THAT*

HELP THIS*OR*THAT

When wildcards are included in the search term, then no searching is done for an exact match, and
NO wildcards are ADDED to the search term, but rather a wildcard search is done using the exact
wildcard search term provided. Results, again, are handled the same for 0, 1, or more results.

In creating Help files for use with the AUX ROM’s HELP function, some things are DITWAD (Do It This Way As
Demanded) and other things are PROG (Please Remember Our Guidelines) . Few things are actually enforced,
but if you follow DITWAD and PROG, everyone is likely to be happier.

DITWAD (Do It This Way As Demanded)
The Help screens are each stored in individual files of up to 64 lines of up to 32 chars each, with each line
terminated by an end-of-line sequence (either LF or CR/LF). The HP-85 CRT alpha memory holds exactly that
amount, hence the limit.

The file names for the Help screen files should be no more than 28 characters long (so that they will fit on a
single line of the CRT along with the “<..>” tag header). This 28 character limit does NOT include the “.txt” file

(115)

Tony Serra
Typewritten text
(Cont'd)

extension, so with that extension, the filename can be a total of 32 characters long. The file name MUST end
with a “.txt” file extension. The file names should not contain any of these characters:

SPACE COMMA / \ : $ @ ! * ?

The file contents must be plain, simple ASCII, as they will get displayed using the HP-85’s font or character set,
so don’t try anything fancy or idiotic like a UTF-8 file or Unicode or blah-blah-blah.

When you create a Help screen file and name it, you must then place it in the appropriate sub-folder of the
HELP85 sub-folder. If you’re doing this on the EBTKS SD card, then the HELP85 folder will be in the root of the
card (“/HELP85”), whereas on the Series 80 Emulator, the HELP85 folder will be wherever you’ve installed the
Emulator (wherever the HP85.EXE file exists). In either case, the SDHOME$ function (on the real or emulated
HP-85) will return the path to this ‘home’ directory, and THAT is where you’ll find the HELP85 folder. Within that
HELP85 folder are sub-folders 00, 01, 02, etc. You’ll place your new Help file in one of those sub-folders, usually
the highest numbered one. Each folder will hold approximately 100 help files before the next higher one should
be created. NOTE: It’s critical that these sub-folders be numbered sequentially and as 2-digit names, as that’s
what the AUX ROM expects and generates as it’s searching for desired help files. Remember: don’t use SPACE
characters (or any of the above-mentioned verboten characters) in the name. Use an ‘_’ (underscore) character
in place of SPACE.

Within the limits of 64 lines of 32 characters, you can do whatever you want, just remember to keep to simple
ASCII characters (look at the HP-85 character set from 32-127, removing the verboten characters, and those are
the only ones you should use, although if you want to get tricky, you COULD use the 0-31 characters, except for
CR and LF, although your editor might choke on some of those).

If the file is longer than 64 lines, all lines beyond 64 will be ignored. If lines are longer than 32 characters, the
excess characters will wrap around to the next line and make a bloody mess out of everything, so don’t do that.
There is NO automatic “word breaking” if your lines are longer than 32 characters. The “wrap around” will happen
exactly at 32 characters if you’re foolish enough to have a line longer than 32.

LINKS in a Help screen begin with <..> and are immediately followed by the filename (minus the .txt suffix) of the
file being linked to. For example, to put a link to “85_Index” in a Help screen, use this text:

<..>85_Index

The “<..>” tells the Help code that there’s a link here and that the filename follows immediately after WITH NO
SPACES! When loaded, the “..” will get replaced by a two digit number starting at “<00>” and increasing with
each link up to a maximum of “<99>”, so a maximum total of 100 links can be included on a single help page (if
you can fit them in…) The link filename is terminated when a space is encountered or the end of the CRT line
(the right edge of the CRT), whichever comes first. So, everything between “<..>” and the first space or right-side
of the CRT line is the filename being linked to. There are no other limitations. The “<..>” can start at the left side
or it can be in the middle of the screen, just so long as there’s room for the entire filename to exist on the same
line with the link tag.

At runtime, when the Help screen is being displayed, the “current LINK” is indicated by an underline beneath the
“<xx>” for that link. You can move the “current link” marker with the cursor keys. If there are multiple link tags on
a single line, up and down cursor pick the one that is CLOSEST to the same column. Left and right cursor only
work when there ARE multiple links on the same (current) row.

If you have Help content that won’t fit in a single 64-line file, you can make “sequential help files” by adding
sequential two-digit numbers to the end of the file name (before the “.txt” extension). Then, when displayed by

(116)

Tony Serra
Typewritten text
(Cont'd)

HELP, the + and - keys can be used to move forward and backward (respectively) through the sequential files.
NOTE: you may not use “00” as one of the numbers, as that is used internally in a way that will fail to link to a file
with 00. An example would be:

HELP_TEST01.txt

HELP_TEST02.txt

HELP_TEST03.txt

etc

If you’re viewing HELP_TEST01 and the - key is pressed, nothing will happen, but if you press the + key, then
HELP_TEST02 will be displayed. Another + key press will display HELP_TEST03, at which point further + key
presses will do nothing, but - key presses can be used to move back to HELP_TEST02 and from there back to
HELP_TEST01. If you need more than 99 sequential files, you’re writing a novel, not help screens, and should
move to a more modern writing environment. It is expected that this will be a fairly rarely used feature, but my
expectations have been dashed before.

PROG (Please Remember Our Guidelines)
This is where we come to the “what to do to make all of the Help screens look and work reasonably the same.”

If the filename specified with the HELP keyword isn’t found exactly, then it will search for filenames that ‘similar’.
In order to facilitate this (that means, “to make this work for other people, you borking fidnip!”) it would be very
good to use certain ‘keywords’ in your filenames, and in a certain order. It’s impossible to come up with a
complete, exhaustive list of keywords to use, but below is a list of reasonably obvious ones. It’s important that
everyone SPELLS THEM THE SAME, so that the search functions will work properly. For example, if different
files use “IOROM”, “ROM_IO”, and “ROMIO”, only one of those are going to be found for the user, depending
upon what the user types in. In NO case should you use “I/O ROM”, “IO ROM”, “ROMI/O”, “ROM I/O”, or “ROM
IO”, because both ‘/’ and SPACE are verboten characters in file names. Further, if you’re making a Help screen
on, say, the CONTROL keyword from the IO ROM, you would name the file “ROM_IO_CONTROL.txt”
(upper/lower case doesn’t matter), not “CONTROL.txt” or “CONTROL_ROM_IO.txt”. You want to include all
reasonable “search keywords” that will help the HELP statement find your file. If you do it right, then your file
(along with others, potentially) will be found if the user types any of these commands:

HELP ROM IO

HELP CONTROL

HELP ROM CONTROL

HELP CONTROL ROM IO

Your file would still be found for all four of those, even if you named it “CONTROL_ROM.txt” or
“CONTROL_ROM_IO.txt”, but it would be very nice, thank you, please, to have some semblance of consistency
in the naming of these files.

So, when using multiple ‘keywords’ in your file name (think of them as “search terms”), they should be used in
“highest-to-lowest” hierarchical order. You’re welcome to choose whichever keywords make the most sense (and
fit within the 28 character limit), and make up your own, as well. But please keep the above in mind.

(117)

Tony Serra
Typewritten text
(Cont'd)

You do NOT need to use all ‘levels’ of keywords, and in general should OMIT levels of keywords unless they
seem necessary for clarity OR for separating THIS help subject from foreseeable OTHER help subjects. For
example, you will rarely want to place 83, 85, 86, 87 at the start of your Help, as any given collection of help
screens will be targeted at EITHER the HP 85 family of computers OR targeted at the 86/87 family of computers,
and their respective help files will be in different folder trees (HELP85 and HELP87). But if it’s REALLY important,
then you would start off with one of those. Try to dredge up some logic, reason, and uncommon sense when
choosing which levels of keywords to include, using everything that seems reasonable to use, and no more.
Further, management reserves the right to rename your Help files without notice, consultation, or lip service. In
general, avoid “model numbers” in filenames whenever possible (such as “82936A” … what the hell is THAT?
Rather, use “ROM_DRAWER”; instead of “82937A”, use “HPIB”). Keep it simple, because HELP users need
help, and if they have model numbers memorized, they probably don’t need help. You can put model numbers IN
the Help screen itself, as THAT might be helpful…

Suggested keywords, in highest-to-lowest groupings, are:

DEVICE
83
85
85A
85B
86
86A
86B
87
87XM
DISK (external)
PRINTER (external)
PLOTTER
etc.

SUB-SYSTEM
KEYBOARD
CRT
TAPE
PRINTER (internal)
DISK (86 “parallel interface” drives)
etc.

IO MODULES
HPIB
GPIO
SERIAL

(118)

Tony Serra
Typewritten text
(Cont'd)

BCD
PARALLEL
MODEM
RAM
ROM
EBTKS
etc.

ROMS & BPGMS
SYS (system ROMs)
GRAPH
PROGDEV
MIKSAM
LANG
EXT
ASM
SYSEXT
FORTH
MATRIX
IO
EMS
MS
ED
SERVICE
AP
PP
AUX
BPGM [name]

KEYWORDS
(actual keywords from Basic language provided by SYS/ROM/BPGM)

Ideally, there will be “hierarchical index pages,” so that the top-level ‘default’ page (85_Index) will have links to all
of the other “next level index pages”, and those pages will have links to either further index pages or to actual
files, so that a user could ‘browse’ or ‘drill’ their way down to the information they’re looking for, as well as trying
to search directly for it via a HELP xxxxx command.

With only one link per line, a single index could point to 64 files or other index pages. If we average that out to
half of that, 32 links per index page… if 85_Index has 32 links to other index pages, and each of those averaged
links to 32 files, just that would handle 1024 help files. So, using this scheme, the index is quite BROAD and
SHALLOW, not more than 2 or 3 levels of indexing, most likely. It’s conceivable that some Help pages will need
to be linked to from more than one index, but that would definitely be an exception and not a rule.

(119)

Practice of Operation
Stuff goes here that goes deep into how EBTKS works.

For now, here is an interesting writeup from Everett Kaser (the author of the companion AUXROMs) on how it
works.

Everett Kaser 10/27/2020 at 8:25 am

What Philip and Russell came up with is pretty incredible. Basically, you just have a very fast processor (a
Teensy 4.1 microprocessor) hanging on the I/O bus (through level-shifting buffers), along with a few other minor
electronics, and then everything else is software. The Teensy 4.1 (which has built-in 100 Mbit Ethernet, but not
currently supported) runs at 600 Mhz, which compared to the Series 80’s 613 Khz, is 963 cycles of the Teensy
clock for every 1 cycle of the Series 80 clock. That gives Teensy a fair amount of time to do sh… uh… stuff
during every single cycle of the Series 80 clocks.

Think of it as a cross between a logic analyzer and a software emulator. Teensy can watch the Series 80 bus for
LMAs (Load Memory Address), compare the address to see if its something it’s interested in, and then take
actions (like setting up to read or write Teensy RAM that is being used to emulate Series 80 RAM, or providing
ROM code bytes for emulated ROMs when the 85CPU is executing or just reading those ROMs, or doing ‘silly’
things like placing RAM right in the middle of ROM space (as it does for the AUXROMs, providing
communications buffers between the Series 80 AUXROMs and the EBTKS Teensy processor, which is a little
whacko when you think about it, because the Teensy processor is emulating the AUXROM, the RAM buried in it,
as well as its own ‘side’ of the EBTKS/AUXROM communications that are being done through that emulated
RAM ‘window’). It can also watch all of the writes to CRT control registers and CRT RAM, so even though the
HP-85 CRT’s control registers aren’t readable, you can read them via Teensy. Teensy can save and or write the
entire CRT RAM contents in a couple of retrace cycles (quicker than the blink of an eye). Oh, and, of course,
what started it all off, if you unplug the ribbon cables from the real tape drive, Teensy can “take over” the tape
controller’s I/O addresses and act just like the real tape controller, providing an emulated tape drive with
emulated tape cartridges, much as my emulator does. Oh, and also I/O cards: HPIB with emulated Amigo disk
drives. Oh, and…

whatever the hell you can think of.

Such as… Philip figured out that, using the 85CPU’s HOLD line, the Teensy can actually do DMA to and from the
85’s RAM, because while the 85 CPU is being held off, Teensy can drive the LMA, RD, WR lines itself allowing it
to read or write whatever it wants as fast as the RD/WR lines can be toggled (i.e., as fast as the 85’s four clocks
run).

Speaking of which (HOLD), the 85 CPU COULD be held off forever, and Teensy could run an emulator of the 85
much faster than the original 85, so you’d just be using the 85’s CRT and keyboard as, essentially, a dumb
terminal, while the emulated 85 was running as fast as Teensy could run it, which would still work with the
hardware I/O cards (of course, the speed would have to be down-tuned during those hardware conversations,
but MOST of the time it’s just executing ROM/RAM code, not doing I/O).

Or you could run an entirely different OS on the Teensy, turning the 85 into whatever computer you wanted.

It’s all software, and the levers of control are in your hands. The possibilities are, quite literally, endless. It just
requires time and someone interested enough to do it. All the sources are, or will be, openly available, so it just
requires someone to get interested, get their hands dirty, and “away we go…”

(You don’t know how hard it’s been not to talk about this stuff for the past 2-3 months! :-)
(120)

EBTKS Console

Console
EBTKS has a console interface that gives direct access to the internal operations of EBTKS via a serial-over-
USB connection. At one end of this interface is the micro-USB connector on the Teensy 4.1 module, highlighted
in this picture.

Connect a compatible USB cable from this port to to your desktop computer or laptop computer. The serial
protocol is

ASCII character set
9600 Baud
8 data bits
No parity bit
1 stop bit

This is commonly just referred to as "9600 8N1" protocol

On your desktop or laptop computer you will need a terminal emulator program.
I like TeraTerm which is free.

Follow this link Setting up TeraTerm to see how to configure TeraTerm for communications with EBTKS.

Console Help Commands
These commands are all a single digit, and display a reminder menu of the available commands.

0 Show HELP page 0, list of other help pages
1 Show HELP page 1, Commands that display information
2 Show HELP page 2, Diagnostic Commands
3 Show HELP page 3, Directory listings, Date, Time
4 Show HELP page 4, Place Holder
5 Show HELP page 5, Commands for Developers
6 Show HELP page 6, Demo Commands

(121)

http://www.fliptronics.com/EBTKS/_images/EBTKS_Micro_USB.jpg
https://ttssh2.osdn.jp/index.html.en
http://www.fliptronics.com/EBTKS/Application_Notes.html#setting-up-teraterm
Tony Serra
Typewritten text
(Cont'd)

Show Help Page 0. This is a list of the other help pages

EBTKS> 0
EBTKS Control commands - not case-sensitive
0 Help for the help levels
1 Help for Display Information
2 Help for Diagnostic commands
3 Help for Directory and Time/Date Commands
5 Help for Developers
6 Help for Demo

The current Time and Date are displayed

1
Top

Show Help Page 1. Various commands that display information

EBTKS> 1
Commands to Display Information
Show log Show the System Logfile
Show boot Show the messages from the boot process, sent to Serial port
Show CRTboot Show the messages sent to the CRT at startup
Show config Show the CONFIG.TXT file
Show media Show the Disk and Tape assignments
Show mb Display current mailboxes and related data
Show CRTVis Show what is visible on the CRT
Show CRTAll Show all of the CRT ALPHA memory
Show key85_O Display HP85 Special Keys in Octal
Show key85_D Display HP85 Special Keys in Decimal
Show key87_O Display HP87 Special Keys in Octal
Show key87_D Display HP87 Special Keys in Decimal
Show other Anything else is a file name path

2
Top

Show Help Page 2. Various Diagnostic commands

EBTKS> 2
Commands for Diagnostic
la setup Set up the logic analyzer
la go Start the logic analyzer
addr Instantly show where HP85 is executing
kbdcode Show key codes for next 10 characters in the keyboard buffer
clean log Clean the Logfile on the SD Card
sdreadtimer Test Reading with different start positions
SDCID Display the CID information for the SD Card
PSRAMTest Test the 8 MB PSRAM. You probably should do the PWO command when test has finished
ESP32 Prog Activate a passthrough serial path to program the ESP32
pwo Pulse PWO, resetting HP85 and EBTKS

(122)

Tony Serra
Typewritten text
0

Tony Serra
Typewritten text
(Cont'd)

Show Help Page 3. Directory and Time/Date Commands

EBTKS> 3
Directory and Date/Time Commands
dir tapes Directory of available tapes
dir disks Directory of available disks
dir roms Directory of available ROMs
dir root Directory of available ROMs
Date Show current Date and Time (just typing 0 also works)
SetDate Set the Date in MM/DD/YYYY format
SetTime Set the Time in HH:MM 24 hour format
adj min The U and D command will adjust minutes
adj hour The U and D command will adjust hours
U Increment the time by 1 minute or hour
D Decrement the time by 1 minute or hour

4
Top

Show Help Page 4. Place Holder

EBTKS> 4
Commands for Auxiliary programs

5
Top

Show Help Page 5. Commands for Developers

EBTKS> 5
Commands for Developers (mostly Philip)
crt 1 Try and understand CRT Busy status timing
crt 2 Fast CRT Write Experiments
crt 3 Normal CRT Write Experiments
crt 4 Test screen Save and Restore
crt 5 Test writing text to HP86/87 CRT

6
Top

Show Help Page 6. Demo Commands

EBTKS> 6
Commands for Demo
graphics test Set graphics mode first
jay pi Jay’s Pi calculator running on Teensy

(123)

http://www.fliptronics.com/EBTKS/Application_Notes.html#setting-time-and-date
http://www.fliptronics.com/EBTKS/Application_Notes.html#setting-time-and-date
http://www.fliptronics.com/EBTKS/Application_Notes.html#adjusting-the-date-and-time
http://www.fliptronics.com/EBTKS/Application_Notes.html#adjusting-the-date-and-time
http://www.fliptronics.com/EBTKS/Application_Notes.html#adjusting-the-date-and-time
http://www.fliptronics.com/EBTKS/Application_Notes.html#adjusting-the-date-and-time
Tony Serra
Typewritten text
3

This is the standard memory layout for the HP-85 A and B

The AUXROM is implemented as one of the option ROMs on the right side of the above diagram

EBTKS Memory Map for theAUXROM(s)

(124)

http://www.fliptronics.com/EBTKS/_images/Memory_Layout.png

This is the detailed view of the AUXROM and its 13 additional extension ROMs

When any of the AUXROMs are selected, a shared/common block of RAM is available that can be both
read and written by EBTKS and the software in the AUXROMs. To manage write access to this shared
area, a set of 32 mailboxes are provided How Mailboxes and Buffers Work While the rest of each
AUXROM is unique, there is a situation where duplication of code is advantageous Fast inter-ROM
jumps .

(125)

http://www.fliptronics.com/EBTKS/_images/AUXROM_Layout.png
http://www.fliptronics.com/EBTKS/AUXROMs_Internals.html#how-mailboxes-buffers-buffer-lengths-and-usage-codes-work
http://www.fliptronics.com/EBTKS/AUXROMs_Internals.html#fast-inter-rom-jumps

AUXROM Shared RAM: Usage Plan
The details of how the shared RAM area is used is described in the paragraphs, starting here AUXROM
Shared RAM: Buffers

Detailed view of the AUXROM sharedRAM area

(126)

http://www.fliptronics.com/EBTKS/_images/AUXROM_RAM_Layout.png
http://www.fliptronics.com/EBTKS/AUXROMs_Internals.html#auxrom-shared-ram-buffers

EBTKS I/O Map
Here is another diagram taken from the HP-85 wiki authored by Everett Kaser that is on the Groups.io web site
HP 85 System ROMs: Memory Layout (and Tokens and Allocation and...)

HP86 and HP87 CRT Controller

I/O locations listed above from 177404 to 177407 are for the CRT controller used in the HP85A, HP85B and
HP9915. This CRT controller is not used in the HP86 and HP87 computers, so these locations are unused.
Instead, the HP 86 and HP87 have an alternative CRT controller (because the screen is 80x25 instead of 32x16)
and the similar I/O registers are shown below.

Full I/O Offset
Address Octal Hex

HP86_87_CRTSAD 177700 300 0xC0

HP86_87_CRTBAD 177701 301 0xC1
HP86_87_CRTSTS 177702 302 0xC2
HP86_87_CRTDAT 177703 303 0xC3

HEYEBTKS
EBTKS reserves the following I/O addresses for communication between the AUXROMs and EBTKS. Writing a
value to this mailbox I/O location tells EBTKS the function to be performed, and further information will be found
in the shared memory .

Full I/O Offset
Address Octal Hex

HEYEBTKS 177740 340 0xE0 (127)

https://groups.io/g/hpseries80/wiki/1893
http://www.fliptronics.com/EBTKS/_images/HP-85_Assigned_IO_Addresses.png
http://www.fliptronics.com/EBTKS/EBTKS_Memory_Map.html#detailed-view-of-the-auxrom-shared-ram-area
Tony Serra
Underline

Tony Serra
Underline

Tony Serra
Underline

Tony Serra
Underline

Tony Serra
Underline

Tony Serra
Underline

Tony Serra
Underline

Tony Serra
Typewritten text
(Cont'd)

Extended Memory Registers

EBTKS can provide Extended memory through the implementation of an EMC (Extended Memory Controller)
and up to 256 kB of Extended memory (at the time of writing this documentation. The 256 kB may change in the
future). There are two types of EMC: Master and non-Master. There can only be one Master EMC in a system.
The HP85B, and all versions of HP86 and HP87 have a built in EMC Master. The HP85A does not have the
capability of supporting Extended memory, and does not have an EMC Master. The EMC implements 2 pointers
which can be directly read and written on the EMC Master and are write only (for direct access) on non-Master
EMCs, such as EBTKS. This means that the standard implementation of an EMC non-Master does not provide
diagnostic access that EBTKS required during its design phase. To remedy this EBTKS includes an additional
read-only register that allows accessing the direct content of PTR2 on EBTKS. See below for details.

For indirect access through PTR1 and PTR2, EBTKS responds to reads and writes as appropriate, if the value of
the selected pointer is in the address range that EBTKS is configured to respond to. Configuration comes from
the CONFIG.TXT file.

If enabled, the EMC emulation has 2 pointer registers accessed as follows

Full I/O Offset
Address Octal Hex

PTR1 177710 310 0xC8
PTR1- 177711 311 0xC9
PTR1+ 177712 312 0xCA
PTR1-+ 177713 313 0xCB
PTR2 177714 314 0xCC
PTR2- 177715 315 0xCD
PTR2+ 177716 316 0xCE
PTR2-+ 177717 317 0xCF

EMC Diagnostic PTR2

In HP85B, HP86 A or B, and HP87 A or XM, the Extended Memory Controller (EMC) master is on the main board
and all other EMCs are in non-master mode, including EBTKS when it is implementing Extended Memory. When
an EMC is in non-master mode, the 8 I/O locations are write only, and all EMCs are written to concurrently, and
update their copies of the these two underlying Pointer Registers (PTR1 and PTR2) regardless of whether the
pointer values indicate memory addresses within the range that the EMC is managing. When direct addressing
mode read operations are performed on these locations, only the master responds with its copy. This created a
problem for the design of EBTKS, when trying to debug its operation, as the above description shows there is no
way to read back PTR1 and PTR2 to check that they are being updated and modified in synchronization with the
other EMCs in the system. To solve this problem (and track down a very tricky bug) EBTKS has an I/O location
that can be read to access the current internal value of PTR2. Although the issue for which it was created has
now been resolved, this diagnostic read capability is still implemented, in case it may be needed in the future.

Full I/O Offset
Address Octal Hex

EBTKSPTR2 177760 360 0xF0

(128)

AUXROMs Internals

Make sure we cover these topics
list of all the architectural details
Calling conventions
Mailboxes and Ownership
Flowchart of transactions
Impact of DMA on interrupts
can’t do DMA to memory we provide (85A only)
Performance measurements
File sizes
File name constraints
Other gotchas

During Boot, the HP-85 only sees AUXROM ID 361 (octal). This image contains the correct signature in the
bottom two bytes, the correct checksums in the top 4 bytes, and during initializing, it registers all the Keywords
supported by all the AUXROMs. (A requirement of AUXROM 361 is that it is the gateway for all AUXROM
functionality, and as such it must register all the Keywords. There is an upper limit of 254 Keywords.) The 13
additional AUXROM IDs are managed by AUXROM 361. These additional AUXROMs are not detected at boot
time because they deliberately do not have the correct second byte of the ROM signature at address 060001.
This allows for more ROM based software than the HP-85 was designed to support.

All 14 AUXROM IDs have the following:

Unique ROM Regions for the lower 4096 bytes from addresses 060000 to 067777
Unique ROM Regions for the upper 1024 bytes from addresses 076000 to 077777
(but see Fast inter-ROM jumps)
A shared RAM area of 3072 bytes from address 070000 to 075777. This is nominally partitioned into six
256 byte blocks and one 1024 byte block. See this diagram. This partitioning is not enforced by the
hardware, so alternative partitioning plans are possible, provided the firmware on EBTKS and AUXROM
use the same plan

This RAM region (in what is normally considered ROM space) is visible to the HP-85 processor whenever any of
the 14 AUXROM IDs are in the RSELEC register.

AUXROM Shared RAM: Buffers
There are 7 Buffers defined in the shared AUXROM RAM. As shown in the above diagram and table, 6 of the
buffers are 256 bytes each, and there is 1 buffer of 1024 bytes. The buffers and their associated Length and
Usage are numbered 0 to 6. These buffers are used to pass data between the HP-85 and EBTKS. Each buffer
has an associated Mailbox (1 byte), Length (2 bytes), and Usage Code (2 bytes).

(129)

http://www.fliptronics.com/EBTKS/EBTKS_Memory_Map.html#detailed-view-of-the-auxrom-shared-ram-area

AUXROM Shared RAM: Mailboxes
There are 32 Mailbox locations, each 1 byte, that should only have the value 0 or 1. Mailboxes 0 to 6 are pre-
assigned to manage access to Buffers 0 to 6. The remaining mailboxes (7 to 31) are available for as yet
unwritten Keywords that may need to manage shared resources. I’ll hold off the rest of the description of
mailboxes until after the next few paragraphs.

AUXROM Shared RAM: Buffer Lengths
There are 8 Buffer Lengths that hold a 16 bit integer and are associated with their respective buffers (0 to 6).
The 8th one is currently a spare. Total 16 bytes.

AUXROM Shared RAM: Usage Code
There are 8 Usage Codes that hold a 16 bit integer and are associated with their respective buffers (0 to 6). The
8th one is currently a spare. Total 16 bytes. Usage Codes are discussed in the AUXROM Keywords section.
Briefly they are used to identify which keyword is to be processed, and on return, the success/failure of the
processing the keyword.

How Mailboxes, Buffers, Buffer Lengths, and
Usage Codes Work
The shared memory area contains 7 buffers (6 * 256 bytes and 1 * 1024). For each buffer there is

A Buffer of either 256 or 1024 bytes
A 1 byte Mailbox. Values 0 or 1
A 2 byte Buffer Length. Values 0 to 256 or 0 to 1024
A 2 byte Buffer Usage. Values 0 to N

Buffers are numbered 0 to 6, as are the Mailboxes, Buffer Lengths, and Buffer Usages. Each resource uses
contiguous memory, i.e. all the mailboxes are contiguous. This diagram Detailed view of the AUXROM shared
RAM area gives the addresses for each resource, with the lowest address for each resource being for Buffer 0,
or its associated Mailbox, Length, or Usage Code.

The Mailboxes control the access rights for the Mailbox, Buffer, Length, and Usage

Each mailbox has a value of either 0 or 1, and the first 7 mailboxes have been assigned to manage the access to
the 7 buffers that are located in the shared RAM and also the associated Length and Usage. When a mailbox
has the value 0, the HP-85 AUXROM software may read or write to the associated buffer without interference
from EBTKS. The same is true for the Length and Usage Code. While in this state, the EBTKS will not read or
write the buffer. Likewise, when the mailbox has the value 1, the associated buffer can be read and written by
EBTKS (and also the Length and Usage), but the HP-85 AUXROM software should not read or write the buffer.

(130)

http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#auxrom-keywords
http://www.fliptronics.com/EBTKS/EBTKS_Memory_Map.html#detailed-view-of-the-auxrom-shared-ram-area
Tony Serra
Typewritten text
(Cont'd)

Note that the ability to read/write, read-only, and should not access are not enforced by hardware. Rather, they
are a convention that is managed by the current state of the mailboxes, and for reliable and predictable system
operation, both the AUXROM software and the EBTKS firmware must abide by these rules.

While a buffers should not be read or written by the side that is not allowed to, it is expected that both sides can
read the mailboxes at any time. This is the mechanism by which ownership of the buffers is passed back and
forth between the EBTKS and the HP-85 AUXROM software.

Ownership can be given, but not taken

Since only the owner of mailbox (and the associated buffer, length and usage code) may write to a mailbox, only
the owner may change its value. Thus, if the HP-85 has ownership (mailbox is 0), it can give ownership to
EBTKS by writing a 1 to the mailbox, and concurrently the ownership of the buffer, length and usage code are
also transferred. The correct way to do this is to make all required changes to the buffer, length, and usage code,
and finally transfer ownership by changing the state of the mailbox. The same process occurs when EBTKS has
ownership of a mailbox (and associated resources) and wants to pass ownership back to the HP-85. The idle
state for ownership is that the AUXROMs own the resources.

All mailboxes are initialized to 0 when the system boots, giving ownership to the AUXROMs.

Mailbox
State

AUXROM
Access to
Mailbox

AUXROM Access
to Buffer, Length,
Usage

EBTKS
Access to
Mailbox

EBTKS Access
to Buffer, Length,
Usage

0 Read and
Write

Read and
Write

Read Only None

1 Read Only None Read and
Write

Read and
Write

All transfers of data between the HP-85 and EBTKS originate with some activity on the HP-85 side

Scenario 1: AUXROM wants to pass 256
bytes to EBTKS
For example, writing a FAT32 disk file to the SD card (This is not a totally complete example)

Mailbox 0 is 0: Indicates HP-85 AUXROMs have ownership
AUXROM software fills buffer 0 with 256 bytes of data, maybe as a result of BASIC function calls
AUXROM software set the Buffer Length for buffer 0 to 256
AUXROM software set the Buffer Usage for buffer 0 to a code indicating which operation is being
performed (for example, write)
When AUXROM software has finished writing data to the buffer, it sets Mailbox 0 to value 1. It has thus
relinquished control of the Buffer 0, and its Length, Usage, and Mailbox, and has assigned them to EBTKS.
AUXROM software then writes 0 (the number of the mailbox and buffer) to I/O register 177740, thus
alerting EBTKS that something has changed
EBTKS then processes the data that was sent. Depending on the task performed, if there is data to be
returned, it is placed in the same buffer and the Length is set appropriately. The Usage is the standard way
of passing back success or failure status for the function just performed. By convention, 0 indicates
success, and other values may indicate success with additional info or information about a failing status.

(131)

Tony Serra
Typewritten text
(Cont'd)

This is not standardized, and different Keywords may use the returned Usage in their own specific way.
After the buffer, Length and Usage have been updated, the final operation that EBTKS performs as part of
the processing of the keyword is to pass ownership of the buffer, Length, and Usage back to AUXROMs by
setting mailbox 0 back to value 0.
While EBTKS was processing the data that the AUXROMs sent it, the scenario branches depending on
whether there is more data to send

More data to send:
The AUXROMs just loops, monitoring the mailbox waiting for it to return to 0, and when it does, it
goes back to the beginning of this scenario to send more data. An example of this might be the
AUXROMs sending 2KB of data, as multiple blocks of 256 bytes.

No more data to send:
After handing off the buffer to the EBTKS, the AUXROMs can continue on to other tasks.
Currently no keyword does this. They all wait for EBTKS to finish, since there is always the
possibility of an error status being returned.

Scenario 2: A Keyword on the HP-85 is
Executed to pass a string to EBTKS
For example, selecting a file name to be associated with the Tape Drive Emulation

The HP-85 is executing a BASIC program and gets to a token for a keyword that is handled by AUXROMs.
AUXROM software gets control. Note that by the time this token is reached, the address and length of the
string will have been put on the operation stack that is managed by register R12.
Mailbox 0 has value 0: Indicates HP-85 AUXROMs have ownership
Code in the AUXROM performs any necessary tasks prior to setting up a buffer with a copy of the string.
AUXROM software copies the string into buffer 0
AUXROM software set the buffer Length for buffer 0 to the length of the string
AUXROM software set the Buffer Usage for buffer 0 to a code indicating that the statement to be processed
is “set filename of emulated tape”
AUXROM software has now finished setting things up, and can now let EBTKS take over. AUXROM
changes Mailbox 0 to value 1. It has thus relinquished control of the buffer 0, and its Length, Usage, and
Mailbox, are assigned to EBTKS.
AUXROM software then writes 0 (the number of the mailbox and buffer) to I/O register 177740, thus
alerting EBTKS that something has changed
AUXROM enters a loop monitoring Mailbox 0, waiting for it to change back to 0
EBTKS sees the write to 177740 and knows there is a new task to be performed, and the value written is 0,
so it knows that the information about what is to be done is in buffer 0 (and its associated Length and
Usage Code)
EBTKS reads the Usage code, sees that it is a File name setting for the emulated Tape Drive. It expects
that the file name is in buffer 0 and the Length is in the associated Length location.
EBTKS fetches the string and does whatever is needed to treat it as a directory path and file name, and
associate that file with the Tape Drive emulation.
Depending on success or failure, EBTKS sets the Usage value either to 0 for success, or some other value
to indicate what type of error occurred

(132)

Tony Serra
Typewritten text
(Cont'd)

Finally, the EBTKS writes a 0 to the mailbox. This ends its involvement with the BASIC Statement.
The AUXROM software (which has been looping, watching the mailbox) sees that ownership has been
returned. It handles the value in the Usage location, that indicates either success or failure.
The AUXROM software does any cleanup, and exits back to wherever it was called from.

Scenario 3: AUXROM wants to receive 256
bytes from EBTKS
For example, getting data from an ADC (This is not a totally complete example)

A set of command bytes (maybe looking like an HPIB request to an ADC) is placed in Buffer 3, possible info
may include voltage range, ADC channel, sample rate, data format, number of samples
The Length value for buffer 3 is set appropriately
The Usage value for buffer 3 is set appropriately
Mailbox 3 is set to 1, thus passing ownership to EBTKS
AUXROM software then writes 3 (the number of the mailbox and buffer) to I/O register 177740, thus
alerting EBTKS that something has changed
AUXROM enters a loop monitoring Mailbox 3, waiting for it to change back to 0
EBTKS performs the requested ADC operation, and places the results in Buffer 3. It also sets the Length
and Usage values.
Lastly, EBTKS sets Mailbox 3 back to 0, relinquishing ownership.
If more data is to be received, a different buffer could be passed to EBTKS, to continue to receive data,
while the buffer just received (3) could be processed.
Using 2 buffers this way (1 being processed, 1 receiving) the system ping-pongs between the two buffers,
maximizing data transfer rate and system utilization.

Fast inter-ROM jumps
It is currently expected that there will be a small block of code in the upper AUXROM region that is identical in all
of the AUXROMs, and this will support very fast switching between different AUXROMs by changing the
RSELEC register and doing a JSB to a branch table in the destination AUXROM. This will be much faster than
how traditional HP-85 ROMS branch between co-operating ROMs (like EMS and EDISK ROMs)

(133)

Logic Analyzer
EBTKS implements a real-time non-invasive logic analyzer that can trace all bus activity.

Need to document how to set it up.

Need to document how to select trigger conditions, and related strategies

Need to document how to interpret the results

Need to get back into the code and add tracing of DMA transactions

(134)

EBTKS Possibilities
These are services that we believe the hardware is capable of providing, but require programming effort to
implement. There is no commitment to do this work, but we are open to volunteers who would like to
contribute to this project.

Items shown in green have been implemented

Items shown in orange have had some proof of concept work done

FAT32 file system including directory paths, and sub-directories
Support for a USB keyboard to replace the normal keyboard, many of which now have keys that stick, or
have broken contacts that are difficult to replace
Support up to 1 MB of Extended Memory
WiFi access via the ESP32 optional module. Could provide a web page interface for changing the ROM
configuration and other options. Could also provide a way to import/export files over WiFi in a host
independent way. Just need a computer with a browser
Emulation of other contemporary computers of the HP-85

PDP-8/E with OS/8 - This could provide the following languages
OS/8 BASIC
OS/8 FORTRAN II
OS/8 FORTRAN IV
OS/8 FOCAL 1969 with UW extensions
OS/8 TECO
Plus get to play with the operating system that was the basis for CP/M, MSDOS, and even the
command box on current MS Windows

CP/M with Z80 emulation - This could provide all of the vast software available for CP/M including
compilers for BASIC, C, FORTRAN, PASCAL.

Lisp support as a scripting system for the background operations of EBTKS
Support ADC/DAC via the QWIIC connector or the 40 pin header.
Provide accelerated Floating Point, Matrix operations, Vector Floating point
Implement the System Monitor board that supports breakpoints and co-operates with the Assembler ROM.
Custom Logic Analyzer for tracing all 1MB5 traffic.
Realtime, non-invasive code traces at the machine-code level.
Improvements to the Logic Analyzer using the system Symbol table
Improved diagnostics vs Service ROM for some functions. No reliance on any specific hardware
functioning.
HP-85 ODT (ODT is a low level debugger for PDP-15, PDP-8 and PDP-11 minicomputers. It is an
acronym for Octal Debugging Technique)
MicroPython/CircuitPython
Graphics Acceleration
Configuration menu system
Screen capture to external printer or to PDF file
External screen support, or mirrored on a host computer
Support a wider screen buffer, adding horizontal scroll to existing vertical scroll

MORE Hardware and Software info needed here (135)

How to order EBTKS
EBTKS is a hobby project, and as such there is no current sales website, this page is it. As of May 15th,
2023 there are about 30 EBTKS left, 10 ready to ship and the remaining need final assembly and
testing. At the current rate of orders, this will probably last till August or September of 2023. There are
no plans to make any more. So far 293 units have been shipped to 27 countries.

EBTKS sells for $140 + shipping, and includes the SD Card and plastic guide rails. If you want a 3D
printed case, you will have to arrange this yourself.

The files for 3D printed cases can be found here EBTKS 3D Printable cases , and one of the two case
designers offers a printing service.

Other than the rest of this site (see link at the top of this page), if you are new to the Series 80
community, you may also want to look at the following:

Youtube video of EBTKS unboxing with CuriousMarc and Philip. The rest of the CuriousMarc
channel has lots of vintage computer and Apollo era deep dives, and repairs, and probably the
best Series 80 repair videos.
There is a general user forum for Series80 computers here: Series 80 forum at groups.io
The group has about 300 members, of which maybe 50 are active, and is low noise, quality
content. There are many EBTKS discussions on this forum, and the EBTKS developers (Philip,
Russell, Everett) answer questions usually the same day.

Please read the appropriate section below carefully. You will need to do the following:

Send an email to me (philip@fliptronics.com), with

Shipping address
Phone Number
Specify your System Configuration so that I can pre-configure your
EBTKS for the best out-of-the-box experience.

There is an example at the bottom of this page.

For USA customers, proceed to the USA payment section .

For non-USA customers I need the above email to do a shipping cost estimate for your country. I will
email you with the total cost, and some bank account info for payment using Wise.com then proceed to
the non-USA payment section

(136)

http://www.fliptronics.com/EBTKS/EBTKS_3D_Cases_Index.html#ebtks-3d-printable-cases
https://www.youtube.com/watch?v=m18GCQs0288
https://groups.io/g/hpseries80
mailto:philip%40fliptronics.com
Tony Serra
Typewritten text
(Cont'd)

USA Shipping is $10 for any number of EBTKS. Shipment is via US post with tracking.

Payment - USA
I use Zelle for payment transfer, which is direct bank to bank transfer, without any fees in most cases.
This does not support credit cards, it requires you to have money in your bank account.

You should be able to go to your online banking and find an option to make a payment with Zelle (most
US banks support this).

My Zelle account is at Bank of America. You will need the following information:

First Name: Philip
Last Name: Freidin
email: philip@fliptronics.com

Please make your payment (covering any fees if needed) such that I receive $140 per EBTKS + $10 for
shipping.

A note about Zelle:

If you understand how scams work, you can just skip this
This is just my public service announcement
To my knowledge, no EBTKS buyer has been scammed via Zelle
I provide this info, because many EBTKS buyers have never used Zelle.

I use Zelle for payment since most US banks support it, it is free to use, has no fees, and
the transfers happen the same day. While Zelle is not a particularly new service, it has
become a new target for scams, and has been in the news. Using Zelle to pay me does not
make you more or less likely to be exposed to a scam. Invariably scams involving payment
services (like Zelle, Western Union and PayPal) require you to be tricked into sending
money to the scammer. This includes phone calls that claim to be from someone at your
bank asking you to log into your account, and then doing what they tell you. Often
associated with some fake issue that is urgent. Sometimes with phone caller ID that
indicates it is from your bank, or IRS, or FBI, or other government department. Caller ID can
be faked, so never trust it when money is involved. Anyone asking you to pay for something
with a gift card that you need to buy, is a scam. Any government department wanting you to
pay with a gift card is an insane scam, the government does not need gift cards. Threats
from “government departments” that require you to pay right now, or you will be arrested, is
a scam. The government does not phone you with such threats, it’s a scam. There are many

Shipping and Payment for USAcustomers

(137)

mailto:philip%40fliptronics.com
Tony Serra
Typewritten text
(Cont'd)

other indicators, but these are all ones I have experienced (and never been scammed
because I know they are fake). As a general rule, if you get a call from someone claiming to
be from your bank or government department i.e. IRS, and they want any of your login
information, or want you to log into your account, it is probably a scam! Even if caller ID
indicates it is from your bank etc., this is unreliable and can be faked.
What should you do
Ask for specifics of the claimed issue and the account number involved. If they can’t provide
that info, just end the call. If it isn’t a scam, keep that info, end the phone call, and call your
bank using the phone number provided on your bank statements. Your initiating the call
using a legitimate bank phone number can get you (via the normal phone menu and
queues) to talk to a real bank representative, and find out if there is a real issue.

You can google for “Zelle scams” to read examples.

Here is a sad example

Shipping and Payment for non-USA
customers
Please send the email as specified above. Currently I have to figure out shipping costs on a case by
case basis, so I need your full address and phone number. I will reply to your email within 2 days with
shipping information and cost.
Unfortunately, for some countries there is no low cost shipping option.

Payment non-USA
I use Wise.com for non-USA customers.

Although not necessary, if you are creating a new Wise account, you can create your account by using
my invite link, which may give me some extra money in the future (if you ever do a transfer over $300)
and give you a discount (a few dollars) on your first transfer, paying for EBTKS.

In my email reply to you that provides shipping cost, I will also provide the information for step (f) below.

Invite link: Wise.com invite link

=== Payment with Wise.com

a. If you don’t already have an account on Wise, create an account
b. Go to the account home
c. Press the “Send Money” button
d. In the upper currency box, select your currency, and in the lower currency box, select USD

(138)

https://www.nj.com/news/2022/08/woman-loses-1k-in-zelle-scam-dont-make-the-same-mistake-she-did.html
https://wise.com/invite/u/philipf341
Tony Serra
Typewritten text
(Cont'd)

e. In the “Recipient gets” field next to the USD, enter the amount in US Dollars, and it will calculate
the amount in your currency in the upper box “You send exactly”

f. Fill in the Bank details on the page labeled “Send to someone else” using the information I
supplied in my email providing shipping cost and my bank account details.

Address and System Configuration
This section is for all customers

I will pre-configure your EBTKS to give the best Out-of-the-Box experience. Mostly this means editing
the CONFIG.TXT file. All of the settings that I will do for you can be changed easily with a text editor.

After you have made your payment, please email me with the following information (don’t include the
quote (”) characters)

A. Your full name

B. Your Phone Number

C. Your shipping address.

Street Name and Number (or Number and Name)
(however addresses are normally written in your country)

Apartment/Suite number/Post box number
City/District/County/Municipality/Hamlet/…

(however addresses are normally written in your country)
State (if appropriate)
Post Code or Zip Code
Country

(and anything else to help get the package to you)

D. The computer you will be initially plugging EBTKS into, One of:

HP83 HP9915A HP85A HP85B HP9915B
HP86A HP86B HP87 HP87XM

E. If it is a model that has a tape drive (HP85A/B, 9915A/B)

enter either
“Tape Drive Disabled” or
“Tape Drive Enabled”

(disabled means either by physical removal, or by unplugging the two flat flexes cables.)
For all other models, enter “N/A” (not applicable)

F. RAM for HP85A,83, 9915A

(139)

Tony Serra
Typewritten text
(Cont'd)

Enter “EBTKS provides 16 kB RAM” (if you have a 16 kB RAM module you will need to
unplug it)
For all others Series 80 models, enter “N/A”

G. EMC memory for HP85B, 9915B, HP86A/86B, HP87/87XM

Model (same as C above) + how many 82908A (64 kB) and 82909A (128 kB)
will be plugged in and how much EMC memory do you want EBTKS to provide,
in banks of 32 kB each. 0 to 8
For non-EMC models (83, 85A, 9915A): “N/A”

For example:

HP85B + 64 kB + 64 kB + EBTKS 8 banks if you have 2 x 82908A
HP86A + 128 kB + EBTKS 2 banks if you have 1 x 82909A
HP87XM + 128 kB + 64 kB + EBTKS 0 banks if you have a 82909A and a 82908A
HP87 + EBTKS 4 banks if you don't have memory modules

Note: On HP86/87 the boot up time is impacted by how much EMC memory there is. Working with
CONFIG.TXT

H. Make sure if you have any I/O modules plugged in (like HPIB) that the select code is not 3, which
is used by EBTKS. After you have checked you computer, enter “No other modules use Select
Code 3”

For all Series80 models, I will assume that you have unplugged any ROM drawer. EBTKS can be
configured for any ROM combination. I will assume the default built-in ROMS for HP85B, 9915B, and all
86 and 87 models. HPIB and other modules can be plugged in, but must not use select code 3.

Here is an example of a correctly formatted email:

A) Mark Smith
B) (123) 555-1212
C) 1234 HP85 Way
 Apt 488
 Springfield TX 23456
 USA
D) HP85B
E) Tape Drive disabled
F) N/A
G) HP85B + 64 kB + 64 kB + EBTKS 8 banks
H) No other modules use Select Code 3

When sending me this email (philip@fliptronics.com) , you are welcome to ask any questions or
clarifications.

(140)

http://www.fliptronics.com/EBTKS/Working_with_CONFIG.TXT.html#extended-memory-control-emc
mailto:philip%40fliptronics.com

Application Notes

Using EBTKS in multiple Series80
Computers
Lots of wise text explaining multiple SD Cards. Need for different base file set for 85A/B and 86/87.

SD Card contents differences between
85A/B and 86/87¶
Lots of wise text explaining differences in the default floppy, and the /TOK directory and also the default media
assignments

Editing CONFIG.TXT with BASIC programs
Lots of wise text explaining about need to reboot, and need to be very, very, careful not to break JSON formatting

Setting up TeraTerm
TeraTerm is a free terminal emulator program that can run on a PC and connect via a USB cable to the Teensy
4.1 module on EBTKS. The usb port on the Teensy 4.1 is called the console port.

Connecting EBTKS Teensy Console port to your
computer
To use the console, you need to connect a USB micro-B cable to the non SD Card end of the Teensy 4.1 module
to your PC/MAC, and run a terminal emulator program. My preference is TeraTerm.

(141)

http://www.fliptronics.com/EBTKS/_images/EBTKS_Micro_USB.jpg
Tony Serra
Typewritten text
(Cont'd)

The Console commands are documented here EBTKS Console

When you connect the USB cable to the PC (assuming EBTKS is powered by being in a powered Series 80
computer) Windows will go to the Internet and find the device driver for the Teensy 4.1 virtual COM port, and
then install it.

You can check that it was successful by using the device manager. You should see some thing like this (showing
COM4 was assigned):

Setting up TeraTerm for EBTKS
EBTKS also has a set of built in diagnostic tool (primarily for Philip’s use) that are minimally listed and poorly
documented here: EBTKS Console

These commands are available over a virtual serial link over USB. There is a micro USB connector on the
Teensy module at the other end from the SD Card. You will need a terminal emulator program on your PC/MAC
that connects to the COM port that will become available after the connection is made. The protocol is vanilla
9600 Baud 8N1. I use TeraTerm, which is a free terminal emulator.

After installing TeraTerm, on the menu line, select File->New Connection and select Serial and the virtual COM
port that Teensy provides over the USB connection, as shown in thabove picture. This will require that Teensy is
plugged into your Series 80 computer, and power is on.

(142)

http://www.fliptronics.com/EBTKS/EBTKS_Console.html#ebtks-console
http://www.fliptronics.com/EBTKS/EBTKS_Console.html#ebtks-console
Tony Serra
Typewritten text
(Cont'd)

Then, continue with configuring this connection:

On the Setup -> Terminal page, do this:

(143)

Tony Serra
Typewritten text
(Cont'd)

With your Series 80 computer + EBTKS running, you should get an EBTKS console prompt like this:

EBTKS>

The Console commands are minimally documented here EBTKS Console

Setting Time and Date
Currently there is no way to adjust the Time or Date from the Series 80 computer, but it can be done with the
EBTKS Console.

Follow this link Setting up TeraTerm to see how to configure TeraTerm for communications with EBTKS, or as a
guide to configure some other terminal emulator.

Once you have your terminal emulator set up, and connected to the EBTKS, you should get a prompt for a
command:

EBTKS>

Setting the Date
To change the date, the setdate command requires the full month/day/year as shown in these examples:

EBTKS>setdate MM/DD/YYYY

EBTKS>setdate 03/19/2023

On the Setup -> Serial Port page, do this:

(144)

http://www.fliptronics.com/EBTKS/EBTKS_Console.html#ebtks-console
http://www.fliptronics.com/EBTKS/EBTKS_Console.html#ebtks-console
Tony Serra
Typewritten text
(Cont'd)

Setting the Time
To change the time, the settime command requires both hours and minutes as shown in these examples:

EBTKS>settime HH:MM

EBTKS>settime 14:35 (2:35 pm)

If you want to get the exact second, set the minutes part to the next minute, and type the enter key when the new
minute starts.

Adjusting the Date and Time
Sometimes it is much easier to adjust the time or date rather than entering it as above. To facilitate this, EBTKS
has two adjustment modes:

adj hours (the initial default mode)
adj min

In both modes, the “U” and “D” characters change either the hours or minutes up/down by 1, and then display the
new date or time. After typing U/D you still need to type the enter key.

EBTKS> 0

EBTKS Control commands - not case-sensitive

0 Help for the help levels
1 Help for Display Information
2 Help for Diagnostic commands
3 Help for Directory and Time/Date Commands
5 Help for Developers
6 Help for Demo
8 Simple Logic Analyzer for emulated 1MB5

The time is 19:03:28 on Sunday the 19th of March 2023

EBTKS> u
Now 20:03
EBTKS> u
Now 21:03
EBTKS> d
Now 20:04
EBTKS> d
Now 19:04
EBTKS> adj min
Up/Down adjust (U/D) is now minutes
EBTKS> d
Now 19:03
EBTKS> d
Now 19:02
EBTKS> d
Now 19:01
EBTKS> u
Now 19:02
EBTKS> u

(145)

Tony Serra
Typewritten text
(Cont'd)

Now 19:03
EBTKS> u
Now 19:04
EBTKS> adj hour
Up/Down adjust (U/D) is now hours
EBTKS> 0

EBTKS Control commands - not case-sensitive

0 Help for the help levels
1 Help for Display Information
2 Help for Diagnostic commands
3 Help for Directory and Time/Date Commands
5 Help for Developers
6 Help for Demo
8 Simple Logic Analyzer for emulated 1MB5

The time is 19:04:42 on Sunday the 19th of March 2023

EBTKS>

More on MOUNT
EBTKS implements disks and tapes as files that are stored in the /disks/ and /tapes/ directories, respectively. An
initial set of associations is provided in CONFIG.TXT .

You can change these “on-the-fly” using the MOUNT command. The associations between a msus$ and the files
that represents disks or tapes are lost when the Series 80 computer is turned off, and when turned back on, the
associations in CONFIG.TXT are restored.

If you want to make the association permanent, then the CONFIG.TXT file needs to be edited. This is
documented here Disk Drives . This description is quite detailed, as the complete mangemnt of storage is fairly
complex. If you aren’t trying to do anything exotic, the easiest shortcut is to just change the filename in an
existing msus$ association. This is described below.

A virtual disk should be located in the /disks/ directory on the SD card, and should have a .dsk extension. Case
doesen’t matter, so .DSK is also ok.

Create a temporary association
The 85StandardPac can be found here: “/EK_DISKS/DISKS0/85STANDARDPAC”

Copy the file using EBTKS commands

SDCOPY "/EK_DISKS/DISKS0/85STANDARDPAC","/DISKS/85STANDARDPAC.DSK"

Note: virtual floppy disk images are recognizable by their file length of 264 kB, exact size is 270336.

Note: the example SDCOPY also appended the required file extension.

(146)

http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#mount
http://www.fliptronics.com/EBTKS/Working_with_CONFIG.TXT.html#disk-drives
Tony Serra
Typewritten text
(Cont'd)

SDCAT /DISKS/

and expect to see a line with

85STANDARDPAC.DSK 270336

Copy the file using PC/MAC commands

Plug the SD Card plugged into your PC/MAC and use appropriate commands to copy 85STANDARDPAC from
/EK_DISKS/DISKS0/ to /disks/ , and add the file extension .dsk

Now that the floppy image is in the right location

Once the file 85STANDARDPAC.DSK is in the /disks/ directory you can use the MOUNT command to associate
it with an msus$ that has already been setup in CONFIG.TXT.

Note: you can’t create new msus$ while EBTKS is running.

MOUNT ":D302" , "/DISKS/85StandardPac.DSK",0

CAT ":D302"

[Volume]: StdPac
Name Type Bytes Recs
MOVING PROG 256 40
AMORT PROG 256 17
POLY PROG 256 29
SIMUL PROG 256 47
ROOTS PROG 256 19
CURVE PROG 256 55
FPLOT PROG 256 22
DPLOT PROG 256 43
HISTO PROG 256 36
TEACH PROG 256 27
CALEND PROG 256 22
BIORHY PROG 256 21
TIMER PROG 256 30
COMPZR PROG 256 56
SKI PROG 256 20
MUSIC DATA 256 44

This is a temporary association. When the 85A (or any other Series 80 computer) is restarted, “:D302” will be
associated with whatever is in CONFIG.TXT

The above MOUNT command could be re-issued, to re-mount the disk. You won’t need to repeat the prior copy
operation.

Create a permanent association
This is done by editing the CONFIG.TXT file.

The copy step is optional, Create a temporary association

Confirm the copy with

(147)

http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#mount
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#mount
Tony Serra
Typewritten text
(Cont'd)

Appending the “.DSK” to the disk image file is optional.

Edit CONFIG.TXT and make the association permanent.
At about line 111, you should find a section that looks exactly like this:

1 {
2 "Comment": "msus$ 302",
3 "unit": 2,
4 "filepath": "/disks/Floppy_scr.dsk",
5 "writeProtect": false,
6 "enable": true
7 }

Change it to this (the only change is line 4)

1 {
2 "Comment": "msus$ 302",
3 "unit": 2,
4 "filepath": "/EK_disks/disks0/85StandardPac",
5 "writeProtect": false,
6 "enable": true
7 }

NOTE:
1. Only the “filepath” line (4) was changed
2. 85StandardPac did not need to be moved
3. Didn’t need the file extension .dsk to be added
4. Shows up in the boot screen messages if you scroll the text up
5. Association happens at boot time, no need for MOUNT
6. Permanent, until you edit this section of CONFIG.TXT

CAT ":D302"

will give the same results as in the prior section.

MOUNT: Additional reading
How to check the current file association to a msus$ MEDIA$

The mode flag for the MOUNT command MOUNT

To get a deeper understanding of this part of CONFIG.TXT, start reading at Disk Drives and read down till you
get to the Printers heading.

If you want to be more adventurous with CONFIG.TXT, you really should start at the top of Working with
CONFIG.TXT and read/understand everything up to the System Settings heading. Then read the secion relevant
to task you want to do

(148)

http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#media
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#mount
http://www.fliptronics.com/EBTKS/Working_with_CONFIG.TXT.html#disk-drives
http://www.fliptronics.com/EBTKS/Working_with_CONFIG.TXT.html#working-with-config-txt

Apparently, EBTKS and the CP/M module can co-exist, and EBTKS can provide the disk services that CP/M
requires. This was never a design goal.

This would not have been possible without the help of:

Martin Hepperle: CPM-Usage.pdf
All contributors to: Forum File Section for CP/M
Donation of a CP/M module: TubeTimeUS on Twitter

61K CP/M Version 2.2
HP BIOS Version A Revision 1.00

Copyright (c) 1982 by Hewlett Packard
Copyright (c) 1980 by Digital Research

A>

Using the Service ROM with EBTKS
This is discussed in the following forum article:

Using EBTKS to help with repair of Series 80 computers

Setting up EBTKS and the CP/M module

(149)

https://groups.io/g/hpseries80/files/Software%20-%20Series%2080/HP82900A%20CP-M%20System/CPM-Usage.pdf
https://groups.io/g/hpseries80/files/Software%20-%20Series%2080/HP82900A%20CP-M%20System
https://twitter.com/TubeTimeUS
https://groups.io/g/hpseries80/topic/using_ebtks_to_help_with/93314643

Known Issues
There’s something fisshy when you reference a non existent storage device which gives an error and then
the Series80 computer and EBTKS both hang and need a power cycle
Startup log messages on 85A/B screen is clipped for some items
Current HP86/87 SD card image has :D301 assigned to an HP85A/B games disk
No docs (or support) for WiFi
Hp86/87 hangs if no SD Card plugged in

(150)

WiFi Support
WARNING!!! This document page is for software that is in development and is NOT ready to be used
by end users.

This page
The firmware that runs on Teensy 4.1
The software in the AUXROMs
The firmware running on the ESP32 module
The HTML served by the ESP32 module

are all in current development. Do NOT try following the procedures on this page if this warning is
visible as you may permanently screw up your EBTKS WiFi support. Be patient, you will be notified
by email when the WiFi services are ready to be used.

Requirements for WiFi connectivity
1. To utilize the EBTKS WiFi services, you will need a local network (LAN) that includes a WiFi router. This is

usually either part of your home’s internet connection hardware, as part of your cable/satellite/DSL/Dial-up
Modem, or it is a stand alone Wifi router or access point connected to your internet modem via Ethernet.
You will need the SSID (colloquially, the WiFi name) and the WiFi password

2. A Computer/Laptop/Smartphone that has WiFi connectivity for configuration
3. A Computer/Laptop that has LAN connectivity (via WiFi OR Ethernet) and runs at least one common

internet browser for EBTKS access (Firefox, Safari, Chrome, Internet explorer, Edge)
4. A series 80 computer with an EBTKS installed

WiFi Overview

WiFi Modes
The Wifi functionality on EBTKS is implemented with an ESP32 WROOM32-D module which can be seen in the

back right corner of the board next to LED1. It has a square metal cover. Internally in has a dual core Xtensa ®

32-bir LX6 RISC CPU, a blizard of peripherals, 448 kB of ROM, 520 kB of RAM, WiFi and Bluetooth radios, and
an integrated PCB antenna. Currently, EBTKS only makes use of the WiFi capability, and the CPU resources
needed to support WiFi.

Mode 1
As shipped, the WiFi module is configured as a WiFi access point, broadcasting an SSID of “EBTKS_AP”.

Mode 2
Giving the WiFi module access to your local WiFi router. You will need a Computer/Laptop/Smartphone that
has WiFi connectivity, and the WiFi router’s SSID and password

(151)

Tony Serra
Typewritten text
(Cont'd)

Mode 3
WiFi module is now seen as a URL by other local devices on your home WiFi network. The URL for EBTKS
is http://esp32_ebtks.local/

Mode 4
Connected. You have opened a browser on your desk top or laptop computer, and entered the URL in Mode
3 into the address bar.

Getting from Mode 1 to Mode 4
The following example is using my iPhone, but the procedure will be very similar on any other device that can
connect to WiFi and select the name (SSID) of the WiFi router. The text below refers to the areas marked with
red text or ovals. Your Series 80 computer with an EBTKS installed should be turned on throughout this process.

Select the settings for your WiFi capable device.

(152)

http://www.fliptronics.com/EBTKS/_images/wifi_setup_001.png
Tony Serra
Typewritten text
(Cont'd)

You device should show your current SSID connection (in my case
FLIPNET6_5G), and in the Networks section it shows other SSIDs
that are also active in your location. The rest of this procedure
assumes that you see the default SSID for EBTKS: EBTKS_AP

Select EBTKS_AP, so that you can connect to it rather than your
normal WiFi router.

Select the WiFi settings section. FLIPNET6_5G happens to be my
normal WiFi router on my local LAN

(153)

http://www.fliptronics.com/EBTKS/_images/wifi_setup_003.png
Tony Serra
Typewritten text
(Cont'd)

It is literally “password”

After entering the super secret password to EBTKS_AP, join the
“EBTKS network”.

Your device will now be connected to EBTKS, and you will be
disconnected from the internet, since you have just disconnected
from your normal WiFi router.

EBTKS will now present its WiFi management page. You may
optionally select (1) “Info” , and you will see a view similar to the
next image on this web page. If you skip (1), and instead select (2)
“Configure WiFi”, just skip the next image and continue at the
following one.

You will be prompted for a super secret password to EBTKS_AP.

(154)

http://www.fliptronics.com/EBTKS/_images/wifi_setup_005.png
http://www.fliptronics.com/EBTKS/_images/wifi_setup_007.png
Tony Serra
Typewritten text
(Cont'd)

This is the EBTKS WiFi Configuration page. You will see
EBTKS_AP and “Log In” at the top of the page, and the rest of the
page is all the SSIDs that are detected. Select the SSID for your
Local WiFi router. (note, I have a dual mode WiFi routers, which
presents as FLIPNET6_5G for 5 GHz operation, and also as
FLIPNET6 for 2.4 GHz operation. EBTKS can only detect the 2.4
GHz SSID.) Select the SSID of your WiFi Router.

Note: As far as I know, any router that supports 5 GHz also supports
2.4 GHz, often with very similar names.

This is the optional Info view that shows the status of your EBTKS
WiFi access port. There is nothing you need
to do on this page. When you have finished reviewing the information,
 select “Cancel” and you will be taken backto the previous view. Then
 select (2) “Configure WiFi”

(155)

http://www.fliptronics.com/EBTKS/_images/wifi_setup_009.png
Tony Serra
Typewritten text
(Cont'd)

Now enter the password for your WiFi router. After entering it, select
save. The information wil be saved in the EBTKS ESP32 WiFi
module. This completes the configuration of the EBTKS WiFi
Module.

You now need to go back to the Wifi configuration for your device. If you have been successful with the above
process, you should navigate to the SSID selection screen for your device (third image on this page), and
EBTKS_AP should NOT appear. Now select your normal Wifi router to reconnect to your local LAN.

Enable remote screen mirroring
For HP85A/B

To enable WiFi services on your EBTKS, the CONFIG.TXT must have the following settings, near the beginning
of the file. Check the CONFIG.TXT file on your Micro SD Card, and make edits as needed to the “screenEmu”
and “CRTRemote” fields. Both must be set to “true”.

{
 "machineName": "HP85A",
 "CRTVerbose": true,
 "ram16k": true,

This step is where you tell EBTKS the SSID and password for your
WiFi Router. You have already selected theSSID.

(156)

http://www.fliptronics.com/EBTKS/_images/wifi_setup_011.png
Tony Serra
Typewritten text
(Cont'd)

 "screenEmu": true,
 "CRTRemote": true,
 "tape": {
 "enable": true,
 "filepath": "/tapes/tape1.tap"
 },

For HP86A/B and HP87A/XM

(at the time of writing this documentation, screen mirroring does not yet work for these systems. The firmware
update function should work.)

Set “screenEmu” to true and “CRTRemote” to false.

{
 "machineName": "HP87",
 "CRTVerbose": true,
 "ram16k": true,
 "screenEmu": true,
 "CRTRemote": false,
 "tape": {
 "enable": true,
 "filepath": "/tapes/tape1.tap"
 },

Connect your Browser to EBTKS
In your browser on a computer connected to your LAN (does not need to be connected via WiFi, Ethernet should
also work) enter the following into the address bar:

http://esp32_ebtks.local/

(157)

http://esp32_ebtks.local/

Index
A | B | C | D | E | H | I | K | L | M | O | P | R | S | T | U | W

A
Adding New Keywords
AutoStart
AUXBUF$
AUXCMD

AUXERRN
AUXOPT$
AUXREV
AUXROM
AUXROM Error messages

B
BOOT

C
CONFIG.TXT, [1]

An Example
AutoStart
Autostart:From Tape
Autostart;From CONFIG.TXT
AutoStrart;From Batch file
CRTRemote
CRTVerbose
Disk Drives
EMC
Extended Memory Control
Machine Name
Printers
RAM16K
ROM Entries
ROMs
ScreenEMU
Syntax Checking
Tape Drive
Understanding the msus$ strings

Console
Console Help 0
Console Help 1
Console Help 2
Console Help 3
Console Help 4
Console Help 5
Console Help 6
CPU Capabilities
CRT Functions
CRTCOLS
CRTCURSCOL
CRTCURSOR
CRTCURSROW
CRTGETTOP
CRTON
CRTREAD$
CRTROWS
CRTSETTOP
CRTWRITE

(158)

http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#index-89
http://www.fliptronics.com/EBTKS/Working_with_CONFIG.TXT.html#index-14
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#index-88
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#index-86
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#index-42
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#index-87
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#index-70
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#index-0
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#index-2
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#index-74
http://www.fliptronics.com/EBTKS/Application_Notes.html#index-0
http://www.fliptronics.com/EBTKS/Working_with_CONFIG.TXT.html#index-0
http://www.fliptronics.com/EBTKS/Working_with_CONFIG.TXT.html#index-22
http://www.fliptronics.com/EBTKS/Working_with_CONFIG.TXT.html#index-13
http://www.fliptronics.com/EBTKS/Working_with_CONFIG.TXT.html#index-15
http://www.fliptronics.com/EBTKS/Working_with_CONFIG.TXT.html#index-16
http://www.fliptronics.com/EBTKS/Working_with_CONFIG.TXT.html#index-17
http://www.fliptronics.com/EBTKS/Working_with_CONFIG.TXT.html#index-6
http://www.fliptronics.com/EBTKS/Working_with_CONFIG.TXT.html#index-3
http://www.fliptronics.com/EBTKS/Working_with_CONFIG.TXT.html#index-10
http://www.fliptronics.com/EBTKS/Working_with_CONFIG.TXT.html#index-20
http://www.fliptronics.com/EBTKS/Working_with_CONFIG.TXT.html#index-18
http://www.fliptronics.com/EBTKS/Working_with_CONFIG.TXT.html#index-2
http://www.fliptronics.com/EBTKS/Working_with_CONFIG.TXT.html#index-12
http://www.fliptronics.com/EBTKS/Working_with_CONFIG.TXT.html#index-4
http://www.fliptronics.com/EBTKS/Working_with_CONFIG.TXT.html#index-9
http://www.fliptronics.com/EBTKS/Working_with_CONFIG.TXT.html#index-8
http://www.fliptronics.com/EBTKS/Working_with_CONFIG.TXT.html#index-5
http://www.fliptronics.com/EBTKS/Working_with_CONFIG.TXT.html#index-1
http://www.fliptronics.com/EBTKS/Working_with_CONFIG.TXT.html#index-7
http://www.fliptronics.com/EBTKS/Working_with_CONFIG.TXT.html#index-11
http://www.fliptronics.com/EBTKS/EBTKS_Console.html#index-0
http://www.fliptronics.com/EBTKS/EBTKS_Console.html#index-1
http://www.fliptronics.com/EBTKS/EBTKS_Console.html#index-2
http://www.fliptronics.com/EBTKS/EBTKS_Console.html#index-3
http://www.fliptronics.com/EBTKS/EBTKS_Console.html#index-4
http://www.fliptronics.com/EBTKS/EBTKS_Console.html#index-5
http://www.fliptronics.com/EBTKS/EBTKS_Console.html#index-6
http://www.fliptronics.com/EBTKS/EBTKS_Console.html#index-7
http://www.fliptronics.com/EBTKS/EBTKS.html#index-3
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#index-54
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#index-60
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#index-63
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#index-62
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#index-64
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#index-56
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#index-61
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#index-57
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#index-59
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#index-55
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#index-58
Tony Serra
Typewritten text
Note: If you open this PDF document with a web browser such as Google Chromeor Microsoft Edge, clicking any of the links below will take you to the EBTKS site.

D
DATETIME Directory Manipulation

E
EBTKS Feature List
EBTKS RAM
EBTKSREV$
EMC

EMC Diagnostic PTR2
Export/Import Of Series 80 Files
Extended Memory Control
Extended Memory Registers

H
HELP HEYEBTKS

HP86 and HP87 CRT Controller

I
I2C

K
KBDBUFFER
KBDISKEY

KBDKEY
Keyboard Functions

L
LEDs
LIF DISK Raw Access

LISTROMS
Loading emulated LIF disk and tape images
LOW-LEVEL FUNCTIONS

M
MEDIA$ MOUNT

Mounting the SD Card

(159)

http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#index-41
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#index-29
http://www.fliptronics.com/EBTKS/EBTKS.html#index-1
http://www.fliptronics.com/EBTKS/EBTKS.html#index-5
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#index-71
http://www.fliptronics.com/EBTKS/Working_with_CONFIG.TXT.html#index-21
http://www.fliptronics.com/EBTKS/EBTKS_IO_Map.html#index-3
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#index-38
http://www.fliptronics.com/EBTKS/Working_with_CONFIG.TXT.html#index-19
http://www.fliptronics.com/EBTKS/EBTKS_IO_Map.html#index-2
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#index-49
http://www.fliptronics.com/EBTKS/EBTKS_IO_Map.html#index-1
http://www.fliptronics.com/EBTKS/EBTKS_IO_Map.html#index-0
http://www.fliptronics.com/EBTKS/EBTKS.html#index-7
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#index-51
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#index-52
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#index-53
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#index-50
http://www.fliptronics.com/EBTKS/EBTKS.html#index-6
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#index-75
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#index-44
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#index-3
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#index-85
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#index-9
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#index-5
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#index-7

O
Octal_Codes Options/Settings

Origin Story

P
PEEK POKE

R
RMIDLE
RPEEK

RPOKE
RSECTOR

S
SD Card File Access
SD Card File Manipulation
SDATTR
SDBATCH
SDCAT
SDCD
SDCHAIN
SDCLOSE
SDCOPY
SDCUR$
SDDEL
SDEOF
SDEOL
SDEOL$
SDEXISTS
SDEXPORTLIF
SDFFIRST
SDFLUSH
SDFNEXT
SDGET
SDHOME$

SDIMPORTLIF
SDLOAD
SDLOADBIN
SDMKDIR
SDMORE
SDOPEN
SDPATH$
SDRDLINE
SDREAD
SDREN
SDRMDIR
SDSAVE
SDSEEK
SDSIZE
SDSLASH
SDSLASH$
SDSTORE
SDSTOREBIN
SDWRITE
SETLED
SPRINTF

(160)

http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#index-90
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#index-65
http://www.fliptronics.com/EBTKS/EBTKS.html#index-0
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#index-46
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#index-45
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#index-72
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#index-48
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#index-47
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#index-76
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#index-17
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#index-10
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#index-11
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#index-84
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#index-30
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#index-33
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#index-81
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#index-19
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#index-15
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#index-34
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#index-13
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#index-23
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#index-68
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#index-69
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#index-24
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#index-78
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#index-31
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#index-25
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#index-32
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#index-40
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#index-35
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#index-79
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#index-28
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#index-83
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#index-36
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#index-16
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#index-18
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#index-80
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#index-21
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#index-20
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#index-14
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#index-37
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#index-39
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#index-26
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#index-12
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#index-66
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#index-67
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#index-27
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#index-82
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#index-22
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#index-73
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#index-43

T
Teensy 4.1 Processor module

U
Unloading emulated LIF disk and tape images
UNMOUNT

Unmounting the SD Card
Unquotes file paths and file names

W
WiFi Processor Module WiFi Support

WSECTOR

(161)

http://www.fliptronics.com/EBTKS/EBTKS.html#index-2
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#index-4
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#index-6
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#index-8
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#index-1
http://www.fliptronics.com/EBTKS/EBTKS.html#index-4
http://www.fliptronics.com/EBTKS/WiFi_Support.html#index-0
http://www.fliptronics.com/EBTKS/AUXROM_Keywords.html#index-77

	01-EBTKS Table of Contents.pdf (p.1-4)
	02-EBTKS Overview.pdf (p.5-9)
	001 EBTKS Overview.pdf (p.1)
	002 EBTKS Overview.pdf (p.2)
	003 EBTKS Overview.pdf (p.3)
	004 EBTKS Overview.pdf (p.4)
	005 EBTKS Overview.pdf (p.5)

	03-EBTKS Getting Started.pdf (p.10-23)
	01-EBTKS Getting Started 1 to 3.pdf (p.1-3)
	01-EBTKS Getting Started 4 to14.pdf (p.4-14)

	04-A Guided tour of the MicroSD Card.pdf (p.24)
	05-Working with CONFIG.TXT.pdf (p.25-47)
	05-Working with CONFIG.TXT 1-4.pdf (p.1-4)
	05-Working with CONFIG.TXT 5-23.pdf (p.5-23)

	06-Disk, Tape and SD Card Storage.pdf (p.48-52)
	07-16 KB RAM for the HP-85A.pdf (p.53)
	08-AUXROM Keywords point 4 margins 85%.pdf (p.54-90)
	09-EBTKS Downloads .pdf (p.91-96)
	10-EBTKS 3D Printable cases.pdf (p.97-98)
	11-Daniel Simpson’s 3D case.pdf (p.99-102)
	12-Martin Hepperle’s 3D case.pdf (p.103-107)
	13-Updating the EBTKS Firmware.pdf (p.108-114)
	14-Help.pdf (p.115-119)
	15-Practice of Operation.pdf (p.120)
	16-EBTKS Console.pdf (p.121-123)
	17-EBTKS Memory Map for the AUXROM(s).pdf (p.124-126)
	18-EBTKS I_O Map.pdf (p.127-128)
	19-AUXROMs Internals.pdf (p.129-133)
	20-Logic Analyzer.pdf (p.134)
	21-EBTKS Possibilities.pdf (p.135)
	22-How to order EBTKS.pdf (p.136-140)
	23-Application Notes.pdf (p.141-149)
	24-Known Issues.pdf (p.150)
	25-WiFi Support.pdf (p.151-157)
	26-Index.pdf (p.158-161)

